首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
两级双溶液除湿系统性能研究   总被引:1,自引:0,他引:1  
建立了两级双溶液除湿系统,其核心部件是采用氯化钙溶液预处理空气的第1级除湿器和采用氯化锂溶液的第2级除湿器,并利用数学模型对其除湿效果进行计算.结果表明:与采用氯化钙和氯化锂混合溶液(CELD,氯化钙与氯化锂质量比1:1)的系统相比,双溶液除湿系统的除湿效果更佳且能量利用率更高;在温度30℃、绝对湿度16.2 g/kg的工况下,双溶液除湿系统能够使空气的绝对湿度降至7.93 g/kg,系统的热力性能系数(COP)达到1.08;若采用太阳能驱动系统,当集热器出口的热水温度为87℃时,该系统性能最佳,COP值达到1.08;当热水温度为75℃时,基于太阳辐射的COP最高,其值为0.51.  相似文献   

2.
基于溶液除湿技术,通过数值模拟,分析除湿器/再生器入口空气参数对空调机组性能及运行能耗的影响,提出溶液除湿空调在不同气候条件下的节能措施.结果表明,随着除湿器入口空气温湿度降低,吸湿溶液的流量呈非线性下降趋势,再生能力随再生器入口空气含湿量的降低而增强,所依赖的再生热源温度也随之下降.  相似文献   

3.
研究回收排风潜能的新型液体除湿空调装置,通过回收排风潜能,降低系统中直接蒸发喷淋水的温度,使除湿处理后的空调送风得到降温加湿,达到空调房间所要求的送风温度.同时,空调排风的利用降低了再生空气介质的温度和含湿量,提高了再生溶液的浓度.实验证明,在上海湿热的夏季里,该装置用温度为80℃左右的热源驱动,可以直接获得18℃、相对湿度90%的空调送风;系统的热力系数为0.8,电效比为8.6,节能效果明显.  相似文献   

4.
太阳能集热型溶液再生器性能实验研究   总被引:1,自引:0,他引:1  
采用CaCl2溶液、LiCl溶液、质量比1∶1的CaCl2和LiCl混合溶液,研究了空气入口温度、含湿量、空气流量、溶液流量、溶液进口温度、进口浓度对集热型再生器性能的影响.实验结果表明:较低的溶液进口浓度和空气入口含湿量以及较高的溶液进口温度能够增加再生量;而空气入口温度升高时,再生量仅略有增加;CaCl2溶液的再生性能最优,1∶1混合溶液次之,LiCl溶液的再生性能最差.  相似文献   

5.
以实际液体除湿空调系统为对象,改变液体除湿空调系统中除湿器、再生器的输入空气、溶液的温度、湿度、流量、浓度等参数,研究输入参数变化对输出参数的影响.在优化的系统运行参数条件下,改变供能热源温度,研究液体除湿空调系统整体运行时输出参数的变化和系统制冷量、耗能量及COP值的变化规律.实验结果表明,当再生热源为90℃时,空调送风温度稳定在21℃,热力系数为0.6左右,基本能满足舒适性空调的送风要求.  相似文献   

6.
为探究不同入口参数对溶液除湿再生量的影响,提出一种溶液除湿与中高温热泵耦合的空调系统,将中高温热泵的冷凝热应用于溶液除湿空调系统的溶液再生。通过建立溶液除湿再生器仿真计算模型,研究了不同入口溶液和空气参数下溶液出口浓度和再生器内温度分布情况,并与中低温冷凝热再生进行对比。结果表明:随着空气入口侧风量、溶液入口侧温度、溶液入口侧流量的增加再生量呈上升趋势;随溶液入口侧浓度的增加再生量呈下降趋势;在80℃附近的冷凝热溶液再生量比40℃时高1. 5~1. 9 g/s。  相似文献   

7.
溶液除湿系统具有高效、温湿度独立控制、相较于常规空调冷凝除湿灵活与节能等优点,在高温高湿的环境下能够发挥极大的优势。提高溶液除湿系统的循环性能是解决极端热湿气候区高湿等问题的有效手段,为研究溶液除湿系统如何在极端热湿气候区通过优化循环结构来提高系统性能,以永暑礁为例,分析绝热型叉流除湿器与再生器的运行参数及联合循环方式,研究除湿自循环+级间循环模式的溶液除湿(SD-SIC)系统最佳回流比。通过对除湿器与再生器模型进行数值计算表明:定风量SD-SIC系统最佳回流比为0.8,在该回流比下系统平衡时的除湿/再生量、除湿效率、溶液总能耗密度分别:4.69 g/s、60.53%、72.85 kW·kg/s,分别是SD-IC系统的2.2倍、1.2倍和0.6倍;调节除湿回流比可作为定风量工况SD-SIC系优化空气-流量匹配的方法:在定风量工况下,除湿回流比可以将除SD-SIC系统往最佳流量配比下的SD-IC系统优化,且比SD-IC系统更加节能。可见SD-SIC系统拥有良好的节能潜力,可为极端热湿气候区溶液除湿系统运行策略的优化提供参考。  相似文献   

8.
由于缺少再生器在冬季工况下的性能数据,再生器的设计、运行等都无法根据冬季工况进行.为此,文中搭建了冬季工况下再生器入口空气和溶液参数对再生器性能影响的实验台,得出再生溶液为LiCl溶液时入口空气和溶液参数对再生器出口空气及溶液参数的影响规律如下:出口空气温度、出口溶液温度及出口空气含湿量随入口溶液温度和入口空气温度的升高、入口溶液质量流量以及入口空气含湿量的增大而提高,随入口空气质量流量的增大而降低;增大入口溶液中LiCl的质量分数会使出口空气温度和出口溶液温度升高,而使出口空气含湿量减少.文中还建立了再生量和再生效率的关联式,该关联式可用于冬季工况下再生器的设计、运行及性能研究.  相似文献   

9.
太阳能溶液除湿制冷技术研究进展   总被引:3,自引:0,他引:3  
比较系统介绍了太阳能溶液除湿制冷系统国内外研究历史及现状.提出一种新型太阳能空气预处理溶液集热/再生流程,相对传统集热/再生器理论计算发现其溶液浓度差可提升90%,蓄能密度增加50%.从理论上构建了太阳能驱动溶液除湿与辐射供冷复合空调系统的工艺流程,并对填料塔除湿和再生器进行实验研究得到其传质系数的表达式.从热力学角度找出溶液除湿冷却系统理论再生效率和理论性能系数的表达式.当溶液浓度较低时,理论再生率可大于1.0;当环境温度为35℃,热源温度由60℃升到100℃时,理论性能系数提高1.0.  相似文献   

10.
以质量守恒、能量守恒定律为基础,提出液体除湿空调系统理想除湿效率的概念.建立数学模型并结合已有实验研究,对空气和盐溶液的质量流量、入口温度及入口含湿量、入口浓度等因素与系统溶液除湿性能之间的关系进行了分析.结果表明:虽然单一增大溶液质量流量或减小空气质量流量都可以增大系统液气比,但这两种情况中系统除湿效率的增长规律是不同的;在不同液气比下,理想除湿效率均随空气含湿量的增大呈现出先增大后减小的规律;液气比越大,理想除湿效率变化转折点所对应的空气含湿量越大;除湿效率将随溶液入口浓度增大而增大,而空气入口温度及溶液入口温度对除湿效率无显著影响.文中结果校正或拓展了已有的研究结果,并更加精细、合理.  相似文献   

11.
实验研究了超声雾化液体除湿空调系统的除湿效率,分析了氯化钙和氯化锂混合盐溶液的质量分数、液气比、气液反应时间等因素对除湿效率的影响.结果表明,在9种实验工况下,系统的除湿效率为18.1%~26.9%.随着混合盐溶液的质量分数从38%减小至35%,系统除湿效率逐渐降低;液气比是影响系统除湿效率的重要因素,当液气比由0.18增至0.84时,除湿效率提高约50%;增加气液反应时间能够有效改善除湿效率.另外,提高除湿效率会导致空气温升变大.  相似文献   

12.
以温湿度独立控制空调系统作为研究对象,建立了不同形式温湿度独立控制空调系统模型.通过一实际工程对各系统的COP进行分析、计算,揭示了不同温湿度独立控制系统自身的性能和地区差异.通过对比发现,在室外空气含湿量相对较小的地区应优先考虑热泵转轮除湿系统,对于室外含湿量相对较大的地区适合选择溶液除湿系统和冷凝除湿系统.  相似文献   

13.
冬季工况下溶液再生器性能的实验研究   总被引:1,自引:0,他引:1  
针对溶液再生器冬季工况下的性能数据缺少问题,搭建了冬季工况下再生器性能实验台,实验研究了再生溶液为LiCl溶液时空气入口温度、空气入口含湿量、空气流量以及溶液入口温度、溶液入口浓度、溶液流量对再生器性能的影响,采用再生量和再生效率为评价再生器性能的指标.结果表明:在本实验的工况范围内,增大溶液流量,能够提高再生量和再生...  相似文献   

14.
为了提高太阳能溶液再生系统的运行可靠性,提出了一种用于溶液除湿空调系统的新型太阳能溶液耦合再生系统.分析了该系统的工作原理,建立了该系统的耗能模型,并与传统太阳能溶液热再生系统进行了对比研究.研究结果表明,在2种运行模式下,太阳能耦合再生系统与太阳能热再生系统相比具有较大的节能优势.在太阳能耦合再生系统运行模式下,太阳能集热/再生器出口处溶液浓度对太阳能耦合再生系统耗能的影响最大.在系统设计过程中,应将太阳能集热/再生器出口处溶液浓度设计得尽可能小.此外,太阳能集热/再生器的再生效率对太阳能耦合再生系统的耗能也有较大的影响.  相似文献   

15.
针对提出的温湿度独立控制空调系统(THICS)的冷却+溶液耦合除湿技术,利用SPSS软件进行数据处理及分析,探讨高湿地区该耦合除湿技术在夏季空调运行期间的除湿效果,且通过工程实例进一步说明其节能性。研究结果表明:高湿地区空调集中运行的时间段为6月19日~9月10日,并定义为"空调季";在室外气象条件变化下,高湿地区应用该耦合除湿技术时能够保持送风含湿量与设计值的偏差在合理的范围内,可靠性较高;基于冷却+溶液耦合除湿的THICS无论采用天然冷源还是高温冷水机组,THICS的能耗都比常规的空调系统节能。  相似文献   

16.
太阳能平板降膜再生过程的数值模拟   总被引:2,自引:0,他引:2  
针对太阳能平板集热型再生器中辐射传热和对流传热边界条件,建立了传热传质过程的数学模型,对采用氯化钙溶液的再生过程进行了数值模拟分析,对影响再生过程的各种主要因素做了较详尽的分析.模拟结果表明,较低的溶液入口质量分数和空气入口含湿量以及较高的溶液入口温度能够增大溶液表面和空气间的水蒸气压力差;而增大空气流动Re数和空气/溶液质量流量比可以提高空气、溶液间水分传质系数.采用这些措施都能够得到更好的再生效果.  相似文献   

17.
以系统制冷量Qc、除湿量D、电力性能系数COPe和热力性能系数COPth作为性能评价指标,通过实验研究再生温度与处理空气参数对船用转轮除湿空调系统性能的影响.研究结果表明:处理空气进口温度和含湿量对系统的性能影响较大;在除湿转轮的结构和干燥剂材料已确定的情况下,系统存在一个最优的处理空气流量;系统的合理再生温度应处于100~120℃之间.研究结果进一步证实船用转轮除湿空调在高温、高湿的海洋环境下具有良好的应用优势.  相似文献   

18.
LiCl溶液吸收除湿器的实验与模拟   总被引:2,自引:0,他引:2  
建立了一套以LiCl水溶液为吸收工质的逆流绝热填料塔吸收除湿装置,在处理空气含湿量为14~20g/kg,处理空气流速为1.0~1.2m/s,空气温度为26.0~34.0℃,溶液入口质量分数为0.340~0.400,溶液入口温度为25.0~34.0℃,溶液入口流量为70~230?L/h的条件下,进行了溶液吸收除湿实验研究,通过改变溶液与空气的入口参数,获得空气出口温、湿度的变化状况。建立了过程的热质传递模型,比较模拟数据与实验数据,验证了理论模型有较好的适用性。应用模型对溶液除湿过程进行了模拟分析,预测了除湿过程的操作优化条件。实验结果与模拟数据对溶液吸收式除湿系统的性能分析与工程设计提供了帮助与指导。  相似文献   

19.
为改进溶液除湿系统的性能,提出了一种应用太阳能光伏再生的方法.通过离子交换膜分离溶液中的溶质与水分,从而再生除湿溶液,利用太阳能光伏发电提供再生过程所需的能量.对光伏驱动的溶液除湿空调系统的再生原理与系统流程进行了介绍,建立了除湿再生部分的模型,对各部分进行了质量能量平衡的分析,并将新方法与传统光热再生方法的性能进行了分析比较.结果显示:新方法减小了高环境湿度的不良影响,提高了稳定性;新方法减少了系统对环境的污染;与有热回收的传统方法相比,新方法的性能与之相当,与无热回收的传统方法相比,新方法系统性能高出20%以上,在太阳辐射不足的情况下,新方法的再生性能可达到传统热再生方法的2倍以上.  相似文献   

20.
研究了超声雾化液体除湿空调系统对室内空气品质的影响,得到室内空气中氯化锂质量浓度的安全阈值为70μg/m~3.通过实验分析了入口溶液中氯化锂的质量分数(w_i)、除雾器孔隙率等对空气带液量的影响.当w_i由31.5%上升至38.8%时,空气带液量也随之上升,最高为26.93μg/m~3.除雾器的孔隙率显著影响空气带液量,应使用孔隙率低于93.5%的丝网除雾器.在最不利工况下,该系统空气带液量未超过安全阈值,表明对室内空气品质没有影响.研究成果对超声雾化液体除湿系统的推广有一定指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号