首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于信息熵改进的 K-means 动态聚类算法   总被引:3,自引:2,他引:1  
初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题.因此,提出一个改进的K-means算法.改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果.实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升.  相似文献   

2.
针对传统聚类算法效率低、效果差和稳定性弱等弊端,提出一种新的云计算环境下关联性大数据实时流式可控聚类算法。介绍了关联性实时流式数据的定义和特点。通过粗聚类对实时抵达的数据元组进行相应的预处理,确定类簇的数量与中心点位置,形成通过存在差异的宏簇构成的集合,粗聚类采用的算法为Canopy算法。将粗聚类得到的宏簇传至K-means算法,给出了K-means算法的详细步骤,通过K-means算法完成细聚类,介绍了整个细聚类详细步骤。实验结果表明,所提算法具有效率高、质量好、稳定性强等优势,可有效实现云计算环境下关联性实时流式大数据聚类。  相似文献   

3.
电力负荷聚类分析研究是负荷特性模拟、需求侧管理等应用的基础。针对负荷数据日趋多样性、随机性,传统K-means算法无法有效处理高维数据,且存在人工给定聚类数目K值及随机选取初始聚类中心易收敛至局部最优的问题,本文提出一种基于自编码器(Auto-Encoder,AE)降维的电力负荷聚类方法。首先利用自编码器网络对采集的负荷数据提取特征,降低数据维度,然后通过密度权值Canopy算法对降维后的数据预聚类,得到初始聚类中心和最优聚类数目K值,将预聚类结果结合K-means算法进行聚类。算例结果表明,该方法能够有效对负荷数据进行特征提取,并减少聚类过程中的复杂度,提高了聚类结果准确度和聚类效率。  相似文献   

4.
针对聚类算法在入侵检测应用中存在的参数预设、聚类有效性评价、未知攻击类型检测等问题,提出了一种基于密度和最优聚类数的改进算法,根据样本的分布情况启发式地确定初始聚类中心,从样本的几何结构角度提出一种新的内部评价指标,给出了最优聚类数确定方法,在此基础上,设计了一个增量式的入侵检测模型,实现了聚类中心和聚类数目的动态调整.实验结果表明,与K-means及其他两种改进聚类算法相比,新算法收敛速度更快、聚类准确率更高,能够对未知网络行为进行有效聚类,具有较好的入侵检测效果.  相似文献   

5.
K-means初始聚类中心优化算法研究   总被引:1,自引:1,他引:1  
由于K-means算法对初始中心的依赖性而导致聚类结果可能陷入局部极小,而采用密度函数法的多中心 聚类并结合小类合并运算的聚类结果明显优于K-means的聚类结果。该算法的每一次迭代都是倾向于发现超球 面簇,尤其对于延伸状的不规则簇具有良好的聚类能力。  相似文献   

6.
K -均值聚类算法在当前提取数据挖掘的聚类分析方法中已经取得了一定的成就,为了进一步改进其在数据预处理及神经网络结构中的应用,文中对算法进行了缺陷研究,主要做了以下几个方面的工作:对K-means算法进行了思路及算法主要流程分析;得出K-均值聚类算法存在简单、迅速、结果簇密集、簇与簇之间区别较为明显等优点;分析得出算法存在与处理符号属性的数据不太适应、必须事先给出k值(想要生成的簇的个数)、对“噪声数据”以及孤立的点数据有较大影响、需要不断计算更新调整后的新聚类中心等缺点。在实验验证中结果得出:聚类结果可知,选取不同的值初始值对聚类结果的影响很小;如果聚类数据集迭代次数较多时,可以尝试着改变其数据的输入顺序;变动数据集的输入顺序,会直接影响聚类结果。实验结果对于K-均值算法的工作效率提高了具有明显的参考价值,这一研究对于数据挖掘技术的改进具有一定的意义。  相似文献   

7.
K-means算法以其简单、快速的特点在现实生活中得到广泛应用。然而传统K-means算法容易受到噪声的影响,导致聚类结果不稳定,聚类精度不高。针对这个问题,提出一种基于离群点检测的K-means算法,首先检测出数据集中的离群点,在选择初始种子的时候,避免选择离群点作为初始种子。然后在对非离群点进行聚类完成后,根据离群点到各个聚类的距离,将离群点划分到相应的聚类中。算法有效降低离群点对K-means算法的影响,提高聚类结果的准确率。实验表明,在聚类类别数给定的前提下,在标准数据集UCI上该算法有效降低离群点对K-means算法的影响,提高了聚类的精确率和稳定性。  相似文献   

8.
针对传统K-均值方法不能有效处理动态变化的数据聚类的问题,本文提出了一种改进的数据流聚类技术——流式K-均值聚类(Streaming K-means Clustering,SKC).该方法首先对数据流中已经产生的初始数据块进行K-均值聚类,当数据流的新数据块到来时,通过衡量已经得到的聚类结果与新进入样本块的距离,对样本进行初步简单归类,并计算聚类结果的性能,若聚类结果性能在可接受范围内,则该数据块聚类结束,否则采用K-均值方法对新类进行深层次聚类.采用SKC的流式数据聚类方法处理数据流的聚类问题,对于整个数据流中的多数数据块都进行简单归类,只有少数数据块进行K-均值聚类,有效提高了数据流聚类的效率.实验结果表明,流式K-均值聚类方法能够有效处理数据流的聚类问题.  相似文献   

9.
K-means算法是聚类方法中常用的一种划分方法.基于扩展划分的思想,提出了一种基于扩展的K-means聚类算法(EK-means),在一定程度上避免了聚类结果陷入局部解的现象,减少了原始K-means算法因采用误差平方和准则函数而出现将大的聚类簇分割开的情况.该算法使用了基于距离的技术来处理孤立点,引进了一种基于扩展的方法进行聚类.实验表明该算法可扩展性好,能够很好的识别出孤立点或噪声,并且有很好的精度.  相似文献   

10.
传统K-means 算法对于聚类初始点的选取和距离度量的计算异常敏感,因而很可能导致K-means 算法只能收敛得到局部最优解。为此,提出一种改进的K-means 算法,即K-means 聚类算法最优匹配算法,并进行了相关的算法实验分析。该改进算法首先对传统的K-means 聚类算法进行初始点的选取,并分析聚类结果。然后,分别从初始聚类中心的选择和距离算法的确定进行实验测试,引入轮廓系数评价聚类效果,分析实验结果可知,K-means 聚类算法最优匹配算法具有较好的稳定性和较高的聚类准确率。  相似文献   

11.
传统-means聚类算法的性能依赖于初始聚类中心的选择.本文将复杂网络节点的属性值作为节点的度、聚集度与聚集系数的加权值,通过计算所有节点的加权综合聚集特征值,选取综合聚集特征值高,并且彼此之间无高聚集性特征的K个节点作为聚类的初始聚类中心,然后进行聚类迭代过程.实验结果表明,新算法对初始聚类中心的选取更迅速有效,避免了传统K-means算法初始聚类节点选取的敏感性,进而提高K-means算法的聚类质量.  相似文献   

12.
基于SOFM网络的改进K-均值聚类算法   总被引:1,自引:0,他引:1  
针对传统的K-均值聚类算法中随机选取初始聚类中心的缺陷,提出一种改进的K-均值聚类算法,利用自组织特征映射网络(SOFM)自动获得初始聚类中心.实验结果表明,改进的K-均值聚类算法能有效改善聚类性能,提高聚类的准确率.  相似文献   

13.
为解决传统 K-means 算法中因初始聚类中心选择不当而导致聚类结果陷入局部极值的问题, 采用蝙蝠算法搜寻 K-means 算法的初始聚类中心, 并将模拟退火的思想和基于排挤的小生境技术引入到蝙蝠算法中, 以克服原始蝙蝠算法存在后期收敛速度慢、 搜索力不强等问题。 同时, 通过测试函数验证了其有效性。 最后利用改进后的蝙蝠算法优化 K-means 算法的初始聚类中心, 并将该改进的算法与传统的 K-means 算法的聚类结果进行了对比。 实验结果表明, 改进后的算法的聚类性能比传统的 K-means 算法有很大提高。  相似文献   

14.
针对密度峰值聚类(density peak clustering, DPC)算法不能根据数据集自适应选取聚类中心和截断距离dc,从而不能自适应聚类的问题,提出了一种自适应的密度峰值聚类(adaptive density peak clustering, ADPC)算法.首先,提出了一个综合考虑局部密度ρi和相对距离δi的参数μi,根据μi的排列顺序及下降趋势trend自动确定聚类中心.然后,基于基尼系数G对截断距离dc做了自适应选择.最后,对ADPC算法做出了实验验证,并与DPC算法和K-means算法进行了对比.实验结果表明,ADPC算法具有较高的ARI,NMI和AC值,具有较好的聚类效果.  相似文献   

15.
给出一种将网格技术、密度技术与分形理论的自相似性结合起来的一种有效聚类算法,利用分形维度变化最小同时是相似程度最大的特点来划分数据集从而得出聚类结果.实验表明该算法可以快速有效的处理多维大型数据集,识别出任意形状簇的个数,而且可以从数据集中挖掘出一些有用的分布信息.  相似文献   

16.
针对传统无线传感网的分层路由算法中存在着分簇不均匀、簇首数量不固定、簇首位置不合理、节点的可扩展性不足以及数据传输方式比较单一的问题,提出一种无线传感网能量高效分簇协议.该协议在簇的建立阶段基于K-means++聚类算法进行分簇并采用S_Dbw聚类评价指标挑选其最优分簇,在簇的建立阶段,从每个簇中选取簇内剩余能量最高的节点作为簇首;在数据传输阶段,基于节点间的通信代价使用Dijkstra算法来寻找每个簇首到汇聚节点的最优路径.仿真结果表明:该协议可降低节点与汇聚节点之间数据传输的能耗,延长传感网的生命周期,并且在整个网络能量处于较低水平时也可以较好的覆盖整个监测区域.  相似文献   

17.
在模糊C-均值聚类(FCM)目标函数的基础上按聚类中心分离原则增加一个聚类中心分离项来扩展FCM算法,提出基于聚类中心分离的模糊聚类模型(FCM_CCS)。该模型可使聚类过程中的聚类中心之间距离扩大,从而得到更好的聚类效果。由于该模型和FCM一样对噪声敏感我们提出它的可能性聚类模型(PCM_CCS),最后进一步扩展成它的可能性模糊聚类模型(PFCM_CCS)。基于聚类中心分离的可能性模糊聚类模型在处理噪声数据和克服一致性聚类问题方面表现出良好的性能。对数据集的测试实验结果表明了提出的PFCM_CCS能同时产生模糊隶属度和典型值,使聚类中心间距扩大,同时具有更好的聚类准确率。  相似文献   

18.
基于改进GA的K-均值聚类算法   总被引:3,自引:0,他引:3  
利用遗传算法或免疫规划算法解决初始聚类中心是较好的方法,但容易出现局部早熟现象.为了克服以上缺点,借助免疫机制的优点,将免疫原理的选择操作机制引入遗传算法中,提出基于改进遗传的K-均值聚类算法,该方法结合K-均值算法的高效性和改进遗传算法的全局优化能力,较好地解决了聚类中心优化问题.试验结果表明,本算法能够有效改善聚类质量.  相似文献   

19.
梁卓灵  元昌安  覃晓 《广西科学》2020,27(6):616-621
为改善交通拥堵的情况,本文利用聚类分析方法对移动轨迹数据进行挖掘,识别居民出行的热点区域。传统的Ng-Jordan-Weiss (NJW)谱聚类算法常使用K-means聚类算法来实现最后的聚类操作,然而K-means聚类算法存在对初始值敏感、容易陷入局部最优的缺陷,影响对热点区域的挖掘结果。因此,本研究将方差优化初始中心的K-medoids聚类算法运用到谱聚类算法最后聚类阶段,提出基于方差优化谱聚类的热点区域挖掘算法(Hot Region Mining algorithm based on improved K-medoids Spectral Clustering,HRM-KSC),然后在真实的轨迹数据集上进行试验。试验结果发现,HRM-KSC算法聚类结果的轮廓系数更高,表明HRM-KSC算法改善了NJW谱聚类算法,提高了聚类质量。  相似文献   

20.
In the K-means clustering algorithm, each data point is uniquely placed into one category. The clustering quality is heavily dependent on the initial cluster centroid. Different initializations can yield varied results; local adjustment cannot save the clustering result from poor local optima. If there is an anomaly in a cluster, it will seriously affect the cluster mean value. The K-means clustering algorithm is only suitable for clusters with convex shapes. We therefore propose a novel clustering algorithm CARDBK—"centroid all rank distance(CARD)" which means that all centroids are sorted by distance value from one point and "BK" are the initials of "batch K-means"—in which one point not only modifies a cluster centroid nearest to this point but also modifies multiple clusters centroids adjacent to this point, and the degree of influence of a point on a cluster centroid depends on the distance value between this point and the other nearer cluster centroids. Experimental results showed that our CARDBK algorithm outperformed other algorithms when tested on a number of different data sets based on the following performance indexes: entropy, purity, F1 value, Rand index and normalized mutual information(NMI). Our algorithm manifested to be more stable, linearly scalable and faster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号