首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 271 毫秒
1.
针对传统聚类算法效率低、效果差和稳定性弱等弊端,提出一种新的云计算环境下关联性大数据实时流式可控聚类算法。介绍了关联性实时流式数据的定义和特点。通过粗聚类对实时抵达的数据元组进行相应的预处理,确定类簇的数量与中心点位置,形成通过存在差异的宏簇构成的集合,粗聚类采用的算法为Canopy算法。将粗聚类得到的宏簇传至K-means算法,给出了K-means算法的详细步骤,通过K-means算法完成细聚类,介绍了整个细聚类详细步骤。实验结果表明,所提算法具有效率高、质量好、稳定性强等优势,可有效实现云计算环境下关联性实时流式大数据聚类。  相似文献   

2.
为了提高在大规模流式数据环境下交通热点区域分析的算法效率,提出了一种流式数据两阶段方法;该方法在第一阶段使用基于改进Canopy算法进行粗聚类并产生宏簇,在第二阶段使用K-means算法进行细聚类;并以粗聚类产生的宏簇个数和类簇中心位置为指导产生更加准确的微簇聚类结果。在试验中,使用流式数据两阶段方法对北京市出租车的定位数据进行了聚类分析;并结合热力图和电子地图对聚类结果进行可视化表达,在最终的热力分析结果中可以直观地发现出租车活动较为频繁的热点区域和线路,且与日常出行经验相符合。试验结果表明该算法能够实时地对流式数据进行聚类分析,产生的数据结果可供用户在任意时间窗口范围进行查询分析,有助于为交通活动情况实时分析、交通规划和拥堵治理等方面提供有价值的理论参考依据。  相似文献   

3.
针对全局K-means聚类算法和快速全局K-means聚类算法在选择下一簇的聚类中心点时,需要逐一计算数据集中每个点作为备选聚类中心点时的簇内平方误差函数,而数据集中存在很多不可能作为备选点的噪声点.为剔除噪声点,提出了一种基于高密度数的DGK-means算法,并通过UCI数据库中的4组数据集进行实验测试.验证了在聚类效果稳定的前提下,改进的DGK-means算法比全局K-means算法和快速全局K-means算法,聚类用时更短,聚类效率更高.  相似文献   

4.
为了有效解决云计算环境下海量数据的并行聚类问题,以典型的基于距离的Kmeans聚类算法为例,提出了一种MapReduce并行聚类优化算法.首先将差分进化算法与K-means算法相结合,从而利用差分进化算法的强大全局搜索能力克服典型K-means算法对初始中心较为敏感的缺点,利于增强全局最优解的稳定性.然后把优化后的算法在Hadoop的Map Reduce框架下做了并行化的设计.实验结果表明,与其他多种分布式设计相比,提出的并行聚类优化算法能够在保证聚类效果的前提下,大大减少了运算的时间,提高了大规模数据的聚类效率.  相似文献   

5.
目的探索同时确定K-means算法的最佳聚类数K和最佳初始聚类中心的方法,使K-means算法的聚类结果尽可能地收敛于全局最优解或近似全局最优解。方法以次胜者受罚竞争学习(Rival Penalized Competitive Learning,RPCL)作为K-means的预处理步骤,以其学习结果作为K-means的聚类数和初始聚类中心并依据数据集样本自然分布定义样本密度,将此密度引入RPCL的节点权值调整,以此密度RPCL的输出作为K-means的最佳聚类数K和最佳初始聚类中心。采用UCI机器学习数据库数据集以及随机生成的带有噪音点的人工模拟数据集进行实验测试,并用不同的聚类结果评价指标对聚类结果作了分析。结果提出的密度RPCL为K-means提供了最佳的类簇数和最佳的初始聚类中心。结论基于密度RPCL的K-means算法具有很好的聚类效果,对噪音数据有很强的抗干扰性能。  相似文献   

6.
针对大数据环境下聚类算法所处理数据规模越来越大、对算法时效性要求越来越高的问题,提出一种基于分布式计算框架Spark的改进K-means快速聚类算法Spark-KM.首先针对K-means算法因初始聚类点选择不当导致局部最优、迭代次数增加而无法适应大规模数据聚类的问题,通过预抽样和最大最小距离相结合对K-means算法进行改进;然后对原始数据进行矩阵分割,并存储在不同的Spark计算框架的结点当中;最后根据改进的K-means算法,结合分布式矩阵计算和Spark平台进行大数据快速聚类.结果表明,文中算法可以有效减少结点间的数据移动次数,并具有良好的可扩展性.通过该算法在单机环境和集群环境的对比测试,说明该算法适用于大规模数据环境,且算法性能与数据规模成正比,集群环境较单机环境也具有很大的性能提高.  相似文献   

7.
基于复合形的K-means优化聚类算法研究   总被引:1,自引:0,他引:1  
为了克服K-means算法受初始点影响大、结果稳定性差的不足,提出了一种新的K-means优化聚类算法.介绍了复合形法的基本原理并将其做了一定修改以适用于K-means优化聚类,推导了一系列用于计算的公式,给出了具体的实现步骤与方法.通过算例说明,与其他几种方法相比,该方法结果稳定,计算效率较高,有着很好的推广应用前景.  相似文献   

8.
针对K-means聚类算法依赖初始点、聚类结果受初始点的选取影响较大的缺陷,给出了一种稳定的基于影响空间的初始点优化K-means聚类算法。该算法借助了影响空间数据结构和定义的加权距离吸引因子,将特殊中心点合并为K个微簇,并对微簇中的数据点加权平均得到K个初始中心点,然后执行K-means算法;最后,理论分析和实验结果表明,该初始点优化K-means聚类算法能够有效降低噪声数据对聚类结果的影响,在聚类结果、聚类过程效率方面有较大优势。  相似文献   

9.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。  相似文献   

10.
建立快速有效的针对大规模文本数据的聚类分析方法是当前数据挖掘研究和应用领域中的一个热点问题.为了同时保证聚类效果和提高聚类效率,提出基于"互为最小相似度文本对"搜索的文本聚类算法及分布式并行计算模型.首先利用向量空间模型提出一种文本相似度计算方法;其次,基于"互为最小相似度文本对"搜索选择二分簇中心,提出通过一次划分实现簇质心寻优的二分K-means聚类算法;最后,基于MapReduce框架设计面向云计算应用的大规模文本并行聚类模型.在Hadoop平台上运用真实文本数据的实验表明:提出的聚类算法与原始二分K-means相比,在获得相当聚类效果的同时,具有明显效率优势;并行聚类模型在不同数据规模和计算节点数目上具有良好的扩展性.  相似文献   

11.
基于信息熵改进的 K-means 动态聚类算法   总被引:3,自引:2,他引:1  
初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题.因此,提出一个改进的K-means算法.改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果.实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升.  相似文献   

12.
K -均值聚类算法在当前提取数据挖掘的聚类分析方法中已经取得了一定的成就,为了进一步改进其在数据预处理及神经网络结构中的应用,文中对算法进行了缺陷研究,主要做了以下几个方面的工作:对K-means算法进行了思路及算法主要流程分析;得出K-均值聚类算法存在简单、迅速、结果簇密集、簇与簇之间区别较为明显等优点;分析得出算法存在与处理符号属性的数据不太适应、必须事先给出k值(想要生成的簇的个数)、对“噪声数据”以及孤立的点数据有较大影响、需要不断计算更新调整后的新聚类中心等缺点。在实验验证中结果得出:聚类结果可知,选取不同的值初始值对聚类结果的影响很小;如果聚类数据集迭代次数较多时,可以尝试着改变其数据的输入顺序;变动数据集的输入顺序,会直接影响聚类结果。实验结果对于K-均值算法的工作效率提高了具有明显的参考价值,这一研究对于数据挖掘技术的改进具有一定的意义。  相似文献   

13.
一种新的密度加权粗糙K-均值聚类算法   总被引:1,自引:0,他引:1  
为了克服粗糙K-均值聚类算法初始聚类中心点随机选取,以及样本密度函数定义所存在的缺陷,基于数据对象所在区域的样本点密集程度,定义了新的样本密度函数,选择相互距离最远的K个高密度样本点作为初始聚类中心,克服了现有粗糙K-均值聚类算法的初始中心随机选取的缺点,从而使得聚类结果更接近于全局最优解。同时在类均值计算中,对每个样本根据定义的密度赋以不同的权重,得到不受噪音点影响的更合理的质心。利用UCI机器学习数据库的6组数据集,以及随机生成的带有噪音点的人工模拟数据集进行测试,证明本文算法具有更好的聚类效果,而且对噪音数据有很强的抗干扰性能。  相似文献   

14.
研究了K均值算法中初始聚类中心的选择对算法本身聚类精度及效率的影响,并提出了改进的算法(LK算法,Leader+K-means).LK算法中的初始聚类中心选择不是随机的,而是利用Leader算法得到若干个初始类中心,然后选择包含数据项最多的k个类中心,作为K均值算法的初始类中心.实验结果表明,LK算法在聚类结果的稳定性和正确率方面都是有效可行的.  相似文献   

15.
K均值算法利用K个聚类的均值作为聚类中心,通过对比样本到各聚类中心的距离,将样本划分到距离最近的聚类中,从而实现样本的聚类.分析了K均值算法的基本原理和实现步骤,并将其应用于数据聚类和图像分割,取得了较好的聚类效果.最后,针对K均值算法的不足之处,提出了改进措施,提高了K均值算法的聚类性能.  相似文献   

16.
Web文本聚类是一种典型的无指导机器学习技术,目标是将站点上采集到的Web文本分成若干簇,使同一簇内的文本相似性最大,不同簇间的文本相似性最小.为了对原始粗糙的Web文本数据进行降维处理,在知识属性值的基础上,计算单个属性相对于属性集的重要性量化值,并根据属性重要性量化值对特征向量降维,并采用K-means算法对降维后的数据聚类,实验证明该方法缩短了聚类时间.  相似文献   

17.
Web文本聚类是一种典型的无指导机器学习技术,目标是将站点上采集到的Web文本分成若干簇,使同一簇内的文本相似性最大,不同簇间的文本相似性最小.为了对原始粗糙的Web文本数据进行降维处理,在知识属性值的基础上,计算单个属性相对于属性集的重要性量化值,并根据属性重要性量化值对特征向量降维,并采用K-means算法对降维后的数据聚类,实验证明该方法缩短了聚类时间.  相似文献   

18.
K-means初始聚类中心优化算法研究   总被引:1,自引:1,他引:1  
由于K-means算法对初始中心的依赖性而导致聚类结果可能陷入局部极小,而采用密度函数法的多中心 聚类并结合小类合并运算的聚类结果明显优于K-means的聚类结果。该算法的每一次迭代都是倾向于发现超球 面簇,尤其对于延伸状的不规则簇具有良好的聚类能力。  相似文献   

19.
给出了K-means算法和层次聚类算法在具体网站用户细分中准确率的比较,在细分网站用户这一类问题中,K-means算法在聚类准确率和处理速度上具有较大的优势,能够满足网站用户细分准确率的基本要求,其聚类准确率达到95%左右,且K-means算法处理速度比较快;层次聚类算法的处理速度较K-means算法慢,且其聚类准确率在处理大量用户数据时低于92%,这对于处理网站用户数据这类信息并不具备优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号