首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
废旧镍氢电池正极材料中镍和钴的回收   总被引:3,自引:1,他引:3  
研究了在硫酸体系中回收废旧镍氢电池正极材料中的金属镍和钴. 用正交实验方法考察了浸出温度、浸出时间、硫酸初始浓度以及氧化剂用量对镍、钴浸出率的影响. 实验结果表明,各因素对镍和钴浸出率的影响程度排序均为:氧化剂用量>浸出时间>温度>硫酸初始浓度. 在实验得出的最佳浸出条件下,Co的浸出率为99.7%,Ni的浸出率为99.1%.  相似文献   

2.
刘长久  尚伟 《广西科学》2005,12(2):135-140
综述MH/Ni电池正极材料氢氧化镍的结构、性质和制备方法,并详细介绍影响镍正极性能的因素。  相似文献   

3.
针对废旧锂离子电池对环境污染严重、资源浪费大等问题,对锂离子电池材料中的钴、锂回收工艺进行了研究,探索了废旧电池在NaCl溶液中预放电的最佳浓度和时间,对比分析了正极材料与集流体分离的三种方法,优化出酸浸工艺的最佳工艺参数,探索出了钴、锂沉淀的条件.结果显示,废旧电池在1.5 mol/L的NaCl溶液中放电5 h后可降电池电压至安全值;酸浸的最优的工艺参数为C(H~+)=3.5 mol/L,C(Na_2S_2O_3)=0.25 mol/L,T=90℃,Time=2.3 h,浸出率可达到了99.5%;采用NaOH溶液将pH调至8.5左右可以将钴离子完全沉淀,得到Co(OH)_2沉淀物;采用NaOH溶液调节pH12,再加入适量的Na_2CO_3沉淀锂,锂回收率为73%.  相似文献   

4.
将化学沉淀法回收电镀Ni废液得到的Ni(OH)2作为镍氢电池的正极材料,研究电极各组分对电池充放电性能的影响,并将回收的Ni(OH)2与购买的Ni(OH)2进行对比。实验结果表明:较优的Ni电极组分配比为m(Ni(OH)2)∶m(Ni粉)∶m(乙炔黑)∶m(60%的聚四氟乙烯乳液)=80∶12∶7∶1,电解液浓度为5 mol/L的KOH溶液。所制备电极中回收Ni(OH)2的放电比容量为185.04 mA.h/g,高于购买的Ni(OH)2的放电比容量,且在0.1C倍率下循环性能稳定。  相似文献   

5.
纳米Ni(OH)2的制备与研究   总被引:2,自引:0,他引:2  
镍氢新型二次电池已成为开发热点,但由于现有的镍正极不能与MH负极相匹配,限制了镍氢电池的进一步应用.采用沉淀转化法制备纳米级氢氧化镍,通过调节表面活性剂的含量和实验温度,得出最佳反应条件.对制得的样品进行XRD和TEM表征,并对样品进行了恒流放电测试.测试结果表明:制得的样品为球形,颗粒粒度为纳米级,直径为30~50nm,晶型为β型;将样品与传统的微米级氢氧化镍相比较,测得其电化学容量可提高20%以上.  相似文献   

6.
以锂盐、钴盐、磷酸盐为原料,以柠檬酸为碳源,采用喷雾闪速分解法制备锂离子电池正极材料LiCoPO_4粉体.研究前驱体溶液体系、喷雾闪速热分解温度、前驱体溶液浓度、热处理温度对锂离子电池正极材料LiCoPO_4粉体结构组分和微观形貌的影响.粉体结构组分和微观形貌通过XRD、SEM表征.结果表明:采用硝酸盐体系、选择前驱体浓度0.2mol/L、闪速热分解温度400℃、热处理温度600℃、热处理时间6h,可得到晶型完整、粒度分布均匀的实心球体LiCoPO_4.  相似文献   

7.
由于没有镉污染,对环境友好,用于高功率设备的镍氢电池的需求量增长很快,目前每年的需求量约为5亿只.但是镍氢电池的一些性能还不能完全满足电动工具的使用要求,突出表现在电池大电流充放循环寿命较差.因此,研制高性能的高倍率镍氢电池不仅具有重要的研究意义,也有很大的应用价值.本文研究影响SC型动力电池循环寿命衰减的主要因素,测量了在大电流循环过程中镍氢电池的内阻、温度及重量变化,并运用SEM、XRD对电池内阻升高的原因进行了分析.我们认为电池内阻升高是镍氢电池大电流循环寿命差的主要原因,分析发现在镍氢电池进行大电流充放电循环时,电池正极膨胀,负极微粉化,电池内部孔隙率增加,致使电解液干涸,电池内阻升高.通过增加负极容量,抑制正极膨胀,可以有效改进镍氢电池大电流充放时的循环性能.  相似文献   

8.
高功率型镍氢电池的循环性能   总被引:2,自引:0,他引:2  
由于没有镉污染,对环境友好,用于高功率设备的镍氢电池的需求量增长很快,目前每年的需求量约为5亿只.但是镍氢电池的一些性能还不能完全满足电动工具的使用要求,突出表现在电池大电流充放循环寿命较差.因此,研制高性能的高倍率镍氢电池不仅具有重要的研究意义,也有很大的应用价值.本文研究影响SC型动力电池循环寿命衰减的主要因素,测量了在大电流循环过程中镍氢电池的内阻、温度及重量变化,并运用SEM、XRD对电池内阻升高的原因进行了分析.我们认为电池内阻升高是镍氢电池大电流循环寿命差的主要原因,分析发现在镍氢电池进行大电流充放电循环时,电池正极膨胀,负极微粉化,电池内部孔隙率增加,致使电解液干涸,电池内阻升高.通过增加负极容量,抑制正极膨胀,可以有效改进镍氢电池大电流充放时的循环性能.  相似文献   

9.
本文总结归纳比较了目前废弃二次电池再生处理的火法冶金技术、湿法冶金技术和其他新生再生处理的技术,并指出了现阶段再生处理技术的优缺点,在此基础上提出了废镍氢电池正极极片活性物质的分离研究。正极材料:废弃二次电池正极活性材料在稀硫酸中浸出,在不同的浸泡液pH、浸泡时间和浸泡液温度条件下,对废弃镍氢电池正极活性物质和基体材料分离率进行研究。该流程没有冗繁的净化处理流程,同时分离了正极极片活性物质,具有原料廉价易得、流程简单、能耗低、无二次污染的优点,是一种经济、环保的绿色循环利用技术处理工艺。  相似文献   

10.
氢氧化镍是重要的电池正极材料,其电化学性能的优劣直接决定电池的放电和存储性能。本文介绍了氢氧化镍的充放电机理,简要综述了球形β-Ni(OH):的改性、纳米Ni(OH)2的开发和掺杂α—Ni(OH)2等的研究现状,并指出鉴于目前β-Ni(OH)2的开发已接近极限,纳米Ni(OH)2及α—Ni(OH)2材料的研究和开发前景将会十分广阔。  相似文献   

11.
掺杂球形氢氧化镍的循环伏安特性   总被引:3,自引:0,他引:3  
采用循环伏安法研究了Ni(OH)2粉末微电极,认为Ni(OH)2粉末微电极电化学过程是一个准可逆过程且电极反应在Ni(OH)2/NiOH之间进行;研究了阳极过程中掺杂元素对Ni(OH)2质子扩散系数的影响,发现掺Co后比纯Ni(OH)2的扩散系数提高近1倍,而掺Zn后则扩散系数有所降低,掺Co和Zn后Ni(OH)2电极氧的析出电位均比纯Ni(OH)2的氧的析出电位有所提高。  相似文献   

12.
采用粉末微电极技术,通过循环伏安法对Ni(OH)2使用寿命的测定进行了研究.通过控制微电极孔穴深度,使电极过程不受液相扩散控制,从而提高了电极的充放电电流.在电极循环过程中,放电峰电流随着循环次数而变化,从而反映出电极的循环性能.在每次循环扫描过程中,充电深度达到75%,能够满足常规检测的要求.对含Co与不含Co两种Ni(OH)2的检测结果说明,Co有利于延长Ni(OH)2的寿命,这一点与已往的结论是相符的.应用这一技术,完成一次测试所需时间不到10h.这种方法对于研究Ni(OH)2掺杂元素对寿命的影响是非常快速而有效的.  相似文献   

13.
掺杂球形氢氧化镍电化学行为研究   总被引:2,自引:1,他引:1  
采用循环伏安法研究了Ni(OH)2粉末微电极,认为Ni(OH)2微电极电化学过程是一个准可逆过程且电极反应在Ni(OH)2/NiOOH之间进行.研究了在阳极过程中掺杂元素对Ni(OH)2质子扩散系数的影响,发现掺Co后比纯Ni(OH)2的扩散系数提高近1倍,而掺Zn后则扩散系数有所降低.掺Co和Zn后Ni(OH)2电极的析氧电位均比纯Ni(OH)2的析氧电位有所提高.  相似文献   

14.
采用二次干燥的化学共沉淀法制备出了Co-Al共掺杂的高密度锂离子电池正极材料前驱体Ni0.8Co0.2-xAlx(OH)2(X=0,0.05,0.1,0.15,0.2).研究了不同Co-Al的掺杂比例,NaOH溶液的浓度、滴定速率、烘干方式等因素对前驱体振实密度的影响.XRD分析表明,不同掺杂比例的Ni0.8Co0.2-xAlx(OH)2均为六方层状的β型结构,晶型结构规整.充放电测试表明以此前驱体与LiNO3反应制得的LiNi0.8Co0.15Al0.05O2材料具有良好的电化学性能.  相似文献   

15.
通过对共沉淀Me2+ (Me = Ni, Co, Mn)-NH3-OH--H2O体系进行热力学分析,拟合出lg[Me]-pH关系曲线。以氢氧化钠为共沉淀剂,氨水为络合剂,采用共沉淀法进行锂离子电池(LIB)正极材料LiNi1/3Co1/3Mn1/3O2前驱体(Ni1/3Co1/3Mn1/3)(OH)2的合成研究。热力学分析结果表明:共沉淀体系的最佳pH值为11,合适的氨水浓度[N]为0.1~0.5 mol/L,此时各种金属阳离子(Me2+)的损失最小。基于以上最佳合成反应条件,在不加其它还原剂和絮凝剂时,所得前驱体材料的振实密度达到1.32 g/cm3。  相似文献   

16.
We report the electrochemical performance of Ni(OH)2 on a gas diffusion layer (GDL). The Ni(OH)2 working electrode was successfully prepared via a simple method, and its electrochemical performance in 1 M NaOH electrolyte was investigated. The electrochemical results showed that the Ni(OH)2/GDL provided the maximum specific capacitance value (418.11 F·g?1) at 1 A·g?1. Furthermore, the Ni(OH)2 electrode delivered a high specific energy of 17.25 Wh·kg?1 at a specific power of 272.5 W·kg?1 and retained about 81% of the capacitance after 1000 cycles of galvanostatic charge–discharge (GCD) measurements. The results of scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed the occurrence of sodium deposition after long-time cycling, which caused the reduction in the specific capacitance. This study results suggest that the light-weight GDL, which can help overcome the problem of the oxide layer on metal–foam substrates, is a promising current collector to be used with Ni-based electroactive materials for energy storage applications.  相似文献   

17.
采用水热沉积法和化学还原法制备银修饰的多孔氢氧化钴纳米阵列薄膜,使用X光衍射仪和扫描电镜对样品进行表征.性能测试结果表明,Co(OH)_2/Ag复合材料具有优异的循环稳定性,1 200次循环后其比电容仍然保持869.2F·g~(-1),比氢氧化钴纳米阵列薄膜高出155F·g~(-1).  相似文献   

18.
以尿素和氯化镍为原料,采用水热法制备了泡沫镍载Ni(OH)2纳米片电极,利用扫描电镜(SEM)观测了纳米片的形貌,利用X-射线衍射(XRD)分析了纳米片的结构,通过循环伏安和恒流充放电测试了电极的超级电容性能.检测结果表明:所制备的Ni(OH)2纳米片先构成一种交错连接的线状结构,再以线的形式均匀而密集地覆盖在泡沫镍的骨架上.这种特殊结构使得该纳米片电极表现出良好的电容性能,在电流密度为10mA/cm2的情况下,其面积比电容为255mF/cm2.  相似文献   

19.
本文利用阴极极化电沉积法和化学浸渍法分别制备了含Cd量在5%以内的薄膜式和烧结式氢氧化镍电极,借助循环伏 安和恒电位阶跃等技术考察了薄膜电极在氧化还原过程中质子的扩散系数,结果为10^-10-10^-9cm62/s;并研究了烧结式电极恒电流放电性能,其放电中值电位较好,在与Co同时添加的情况下,该值决定了两者的含量比。  相似文献   

20.
Porous Co(OH)2 film directly grown on nickel foam is prepared by a facile hydrothermal method.The as-prepared Co(OH)2 film possesses a structure consisting of randomly porous nanoflakes with thicknesses of 20-30 nm.The capacitive behavior of the Co(OH)2 film is investigated by cyclic voltammograms and galvanostatic charge-discharge tests in 2 mol/L KOH.The porous Co(OH)2 film exhibits a high discharge capacitance of 935 F g-1 at a current density of 2 A g-1 and excellent rate capability.The specific capacitance keeps a capacitance of 589 F g-1 when the current density increases to 40 A g-1.The specific capacitance of 82.6% is maintained after 1500 cycles at 2 A g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号