首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
针对鲕状赤铁矿石深度还原过程中有害元素磷在金属相中富集的问题,对深度还原过程中磷富集过程进行了研究.在配碳系数为2.0,还原时间80 min,还原温度分别为1 200,1 225,1 250和1 275℃条件下,分析了磷元素在还原物料中的分布规律及还原过程中磷元素的迁移路径.试验结果表明:在1 225℃以下时,磷元素含量由渣相内部到相界面逐渐升高,由相界面到金属相内部逐渐降低;1 250℃以上时,磷含量由渣相到金属相内部逐渐升高.此外,还原过程中磷元素的走向为:磷元素最初主要存在于磷酸盐中,反应开始后磷酸盐与C反应,磷元素被还原为单质磷溶入铁,并在金属相中富集.  相似文献   

2.
在氨性介质中,PO43-与镁合剂生成MgNH4PO4沉淀,经稀硝酸溶解后,以火焰原子吸收法测定镁,从而间接得到磷的含量。本方法线性范围为成:0~48.95mg/L,磷的回收率为95.3%~106.7%,相对标准偏差为1.4%。将方法应用于菠菜、芹菜的不同部位中磷的测定,结果满意。同时直接测定了上述样品中镁的含量,镁的回收率为98.2%~104.3%。  相似文献   

3.
It is necessary to adjust reaction pH when a single kind of PO43is used as phosphorus source to remove NH4 - N in a chemical precipitation process. However, this tedious step could be avoided in experiments that use the buffering effect of the composite phosphate and employ PO43and HPO42as phosphorus sources, pH was controlled by properly changing the proportion of PO43to HPO42-. The influences of pH, material proportion and different addition modes of magnesium on NH4 -N removal efficiency were investigated, with NH4 -N concentration in influent being 200 mg/L. It showed that the ratio of HPO42: PO43was concerned with phosphorus and NH4 -N removal. Under the condition that the total amount of phosphate is definite, the removal efficiency of NH4 -N decreased with the enhancement of HPO42concentration, while the efficiency of phosphorus increased. When increasing PO43concentration, it benefited the removal of NH4 -N, but the remaining phosphorus was high. The results showed that NH4 -N concentration decreased from the initial 200 mg/L to 39.14 mg/L with the remaining PO43at 5.14 mg/L if the ratio of HPO42: PO43remained at 1 : 3.  相似文献   

4.
MAP法处理医药中间体生产废水中氨氮的研究   总被引:1,自引:1,他引:0  
文章研究了MAP法对医药中间体生产废水生化处理之后氨氮的处理效果,通过实验考察了pH值、反应时间、镁氮摩尔比和磷氮摩尔比对处理效果的影响,确定的最佳反应条件是:pH值为10,反应时间为10 min,镁氮摩尔比为1.1∶1.0,磷氮摩尔比为1∶1;在此条件下,氨氮去除率可达90%以上。  相似文献   

5.
针对高磷铁矿还原焙烧降磷过程中脱磷剂成本高、用量大等难题,为更好地开发利用高磷铁矿,采用还原焙烧-磁选工艺,研究了组合脱磷剂对高磷铁矿提铁降磷的影响.通过X射线衍射(XRD)和扫描电子显微镜-能谱仪(SEM-EDS)揭示提铁降磷机理.结果表明:加入13%碳酸钙和2%碳酸钠作为组合脱磷剂能代替传统脱磷剂,并获得了良好的脱磷效果.当原矿铁品位55.58%,含磷0.57%时,在推荐的试验条件下,可获得铁品位93.25%,铁回收率90.75%、磷质量分数0.09%以及磷的去除率高达91.46%的粉状还原铁.加入的组合脱磷剂不仅促使铁氧化物中的磷组元向磷酸钙发生转变,使金属铁颗粒与磷酸钙界限明显,而且还能防止难以还原的铝尖晶石和铁橄榄石的生成,最终实现了磷的深度脱除和铁的有效回收.  相似文献   

6.
用低浓度生活污水筛选适于华南人工湿地的植物   总被引:5,自引:0,他引:5  
为拓展人工湿地的实际应用范围,通过盆栽实验,利用低浓度生活污水对14种待选植物进行了筛选.实验结果显示,与无植物的空白对照相比,绝大多数待选植物的存在并没有明显提高盆栽对COD的去除能力,但却能够有效提高盆栽对污水中氮、磷的去除效果.水力停留时间为8h和24h时,植物吸收对去除氮的平均贡献率分别为44.5%和40.0%,对去除磷的平均贡献率分别为20.9%和25.1%.故对COD的去除能力不适合作为筛选湿地植物的指标,而应以氮、磷的去除率作为筛选指标,同时还应综合考虑植物的抗逆性和观赏性.  相似文献   

7.
有机碳源对生物除磷的影响   总被引:8,自引:0,他引:8  
研究了不同浓度乙酸盐和不同基质的有机碳源对序批式生物膜法生物除磷的影响以及磷的厌氧释放量和好氧吸收量之间的关系。结果表明,为获得稳定良好的生物除磷效果,厌氧时间必须保证生物易降解有机物在厌氧过程基本去除,同时COD负荷也不能太低,还要满足反应器中生物量能够实现净增长。研究认为乙酸盐能够较好地刺激聚磷菌厌氧释磷达到过量生物除磷,磷的厌氧释放量和好氧吸收量具有良好的相关性,为提高除磷效率必须保证足够的厌氧磷释放量。  相似文献   

8.
采用组合纤维填料作为载体的序批式生物膜反应器进行了生物除磷的试验研究.结果表明,在生物除磷过程中,污水中的VFA总量与溶解磷的吸收量具有较好的相关关系,去除1 mg溶解磷大约需要20 mgVFA-COD;为获得稳定良好的生物除磷效果,COD负荷不能太高,否则过多的有机物进入好氧段将引起非聚磷菌的好氧异养微生物异常增殖,导致聚磷菌被洗出;同时COD负荷也不能太低,还要满足反应器中聚磷菌量能够实现净增长;磷的厌氧释放量和好氧吸收量具有良好的相关性,为提高除磷效率必须保证足够的厌氧磷释放量.图5,表1,参12.  相似文献   

9.
This study focuses on the reduction of phosphorus from high-phosphorus-content oolitic iron ore via coal-based reduction. The distribution behavior of phosphorus (i.e., the phosphorus content and the phosphorus distribution ratio in the metal, slag, and gas phases) during reduction was investigated in detail. Experimental results showed that the distribution behavior of phosphorus was strongly influenced by the reduction temperature, the reduction time, and the C/O molar ratio. A higher temperature and a longer reaction time were more favorable for phosphorus reduction and enrichment in the metal phase. An increase in the C/O ratio improved phosphorus reduction but also hindered the mass transfer of the reduced phosphorus when the C/O ratio exceeded 2.0. According to scanning electron microscopy analysis, the iron ore was transformed from an integral structure to metal and slag fractions during the reduction process. Apatite in the ore was reduced to P, and the reduced P was mainly enriched in the metal phase. These results suggest that the proposed method may enable utilization of high-phosphorus-content oolitic iron ore resources.  相似文献   

10.
Literatures revealed that the electron acceptor-nitrite could be inhibitory or toxic in the denitrifying phosphorus removal process. Batch test experiments were used to investigate the inhibitory effect during the anoxic condition. The inoculated activated sludge was taken from a continuous double-sludge denitrifying phosphorus and nitrogen removal system. Nitrite was added at the anoxic stage. One time injection and sequencing batch injection were carried on in the denitrifying dephosphorus procedure. The results indicated that the nitrite concentration higher than 30 mg/L would inhibit the anoxic phosphate uptake severely,and the threshold inhibitory concentration was dependent on the characteristics of the activated sludge and the operating conditions; instead,lower than the inhibitory concentration would not be detrimental to anoxic phosphorus uptake,and it could act as good electron acceptor for the anoxic phosphate accumulated. Positive effects performed during the denitrifying biological dephosphorus all the time. The utility of nitrite as good electron acceptor would provide a new feasible way in the denitrifying phosphorus process.  相似文献   

11.
SBR侧流除磷工艺低成本化学除磷及磷回收潜能分析   总被引:2,自引:0,他引:2  
以序列间歇式活性污泥法(序批式反应器,SBR)侧流除磷工艺为基础,以厌氧释磷液的富磷污水侧流化学除磷过程为研究对象,围绕磷资源回收,探索低成本化学除磷方法.结果表明,富磷污水化学除磷过程可以缓解碳酸盐对除磷药剂的竞争.当侧流化学除磷池以ρ(P)=3~5 mg/L作为出水磷质量浓度控制目标时,单位药剂(CaO/mg)除磷量为0.6~0.2 mg;除磷药剂的用量为城市污水直接化学除磷系统的7.7%~8.4%;处理单位体积(1 m3)ρ(P)=50 mg/L的富磷污水时,可以得到0.27 kg含磷率为17%的化学污泥.SBR侧流除磷工艺可以回收污水中65%的磷,当提高SBR运行周期n和充水比λ时,磷的回收率有望进一步增加.  相似文献   

12.
考察艾蒿人工生态绿地在不同水力负荷下对生活污水中氛和磷的去除效果.,结果表明,艾蒿人工生态绿地启动快,处理效果稳定。人工生态绿地构建后即有很好的除磷效果,构建2周后有较好的除氮效果,在试验的水力条件下,总氮去除率达92%--95%,水力负荷对总氮去除率的影响小,总磷的去除率可达到95%,水力负荷对总磷去除率的影响很大。  相似文献   

13.
鸟粪石-絮凝强化工艺处理鸡粪发酵废水   总被引:1,自引:1,他引:0  
以鸡粪厌氧消化液为对象,研究鸟粪石法回收氮磷的工艺条件.结果表明,反应时间30 min,搅拌转速100r.min-1,加药前调节pH值至9.0,镁氮磷物质的量比1∶1∶0.8条件下,氨氮去除率为71%,总磷去除率为59%,化学需氧量(COD)去除率为32%.反应后的上清液pH值在6~7之间,适宜投加絮凝剂进一步絮凝强化沉淀.聚合氯化铝(PAC)投加量为150mg.L-1时,氨氮、总磷、COD的总去除率为74.6%、66.8%、68.9%.有效提高了废水的可生化性.  相似文献   

14.
采用自制的兼氧-SBR反应器对模拟的有机磷农药废水进行试验研究。对活性污泥进行培养、驯化,两个月后,COD去除率达到80%~90%。通过实验确定了一个周期的厌氧时间为2h、好氧时间为6h;研究了进水磷源、有机磷农药浓度对兼氧-SBR反应器处理效果的影响,不添加磷源比添加磷源处理效果要好,进水有机磷的最佳浓度为250mg/L。  相似文献   

15.
通过Mg与SiO2玻璃间反应的研究,获得了由层状组成的反应组织.实验发现:层厚由表及里呈连续细化的变化规律;反应温度越高,反应层及层片厚度增加;反应时间延长,反应层及层片厚度增加.Mg与SiO2反应动力学呈线性关系,其原因是A层段层状存在显微裂纹,显微裂纹的存在使本应呈现非线性规律的Mg向SiO2扩散反应动力学发生了改变.整个反应组织与心部Mg基体结合良好,硬度由表及里呈连续变化,Mg与SiO2玻璃反应获得的是一种典型的梯度材料.  相似文献   

16.
厌氧反应时间对反硝化聚磷功效及微生物种群的影响   总被引:1,自引:0,他引:1  
采用厌氧/缺氧/好氧序批式反应器(An/A/O-SBR),考察了不同厌氧反应时间(分别为90,120和150min)长期运行条件下的反硝化除磷效果,并利用荧光原位杂交(FISH)技术分析了系统内微生物种群的结构变化.结果发现,厌氧反应时间为90 min系统合成的聚羟基烷酸酯(PHA)量最高,脱氮和除磷平均去除率分别达到92%和93%,聚磷菌占总菌的(58±2.3)%;厌氧反应时间为120 min的系统脱氮和除磷平均去除率分别达到97%和73%,聚磷菌占总菌的(50±2.2)%.而厌氧反应时间为150min的系统合成PHA最低,平均脱氮率仅为79%,聚磷菌数量也减少至(45±2.7)%.厌氧反应时间过长致使PHA含量水平下降,继而发生游离亚硝酸(FNA)的积累,这是导致系统脱氮除磷效率降低的主要原因.  相似文献   

17.
利用反硝化聚磷菌进行动态与静态相结合的反硝化聚磷试验,研究A^2/O厌氧段聚磷菌的反硝化聚磷特性。研究结果表明,在A^2/O厌氧段中占聚磷菌总数52%的菌具有同步反硝化聚磷的生物学特性。当以NO3^- -N作电子受体进行聚磷时,其硝酸盐浓度应限制在50 mg/L以下,初始硝酸盐浓度越高,反硝化速率和缺氧聚磷速率及去除率越快,系统由聚磷转变为释磷的时间将延后。由于释/聚磷过程都需要碳源,所以,应控制进水的化学耗氧量(COD),以200 mg/L为最佳,使在释磷时有充足的碳源而在聚磷时碳源又较少。pH值对释/聚磷有不同程度的影响,在一定范围内,初始pH值越高,释磷效果越好,但当pH≥8.0时,会引起磷酸盐沉积而导致磷酸根浓度降低,从而无法正确判断释磷和生物聚磷效果,反硝化除磷系统的pH值应控制在7.0-7.5的范围内。  相似文献   

18.
八氟戊醇磷酸酯是一种新型的表面活性剂.选取四氟丙醇的联产物八氟戊醇与五氧化二磷为原料,经酯化反应合成,研究反应时间、反应温度、物料配比对反应的影响.得出最佳工艺条件为:配料比n(八氟戊醇)∶n(五氧化二磷)=2.8∶1,反应温度为60℃,最佳反应时间3 h.单双酯产率分别为44.8%和32.6%.对产物性能进行测定,其临界胶束浓度下的表面张力约为24.07 mN/m.  相似文献   

19.
将生石灰作为除磷材料,用以处理含磷废水.在不同初始磷浓度含磷废水中投入不同量生石灰,测量出残余磷浓度,计算出生石灰有效利用率,得出生石灰能够较快且有效地从含磷废水中去除磷,且对高浓度含磷废水中有更好效果.通过pH在除磷时的变化规律,研究生石灰除磷机理,并借助FTIR等表征发现,生石灰的主要成分为CaO,该材料在含磷废水中能够快速释放Ca2+和OH-,并与磷酸根离子发生混凝反应,形成磷酸钙沉淀从而达到除磷的目的.  相似文献   

20.
开发一种具备氮、磷双重吸附能力的富营养化水体修复材料,以沸石为原料,将天然沸石碱洗后与Ca(OH)2、膨润土进行混合,再通过调整混料比例、煅烧温度、煅烧时间、升温速率等过程,筛选出既具有脱氮、除磷能力,又具有一定机械强度的复合颗粒材料. 结果表明:复合颗粒材料最佳制备条件为沸石、Ca(OH)2、膨润土混料质量比20︰1︰2,煅烧温度504 ℃,煅烧时间1.2 h,升温速率5.6 ℃·min?1. 通过单因素实验和相关性分析表明,各因素对材料磷酸盐吸附量、氨氮吸附量、散失率均有不同程度的影响,其中Ca(OH)2与磷酸盐、氨氮吸附量均具有显著相关性. 当初始氮、磷质量浓度为25 mg·L?1时,新型复合材料对磷酸盐和氨氮理论吸附量分别为4.39、4.01 mg·g?1,去除率分别可达到87.7%和80.1%,散失率为11.4%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号