首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
鸟类视觉系统的离顶盖通路   总被引:6,自引:0,他引:6  
离顶盖通路是鸟类视觉系统的一条主要途径,由视网膜-顶盖-圆核-外纹体等组成.视网膜接受外界视觉后主要沿这条通路直接传送到端脑,也有些视觉信息通过一些侧支回路间接地投射到端脑.顶盖-峡核回路构成离顶盖通路的一个侧支,峡核大细胞部-顶盖的兴奋性通路和峡核小细胞部-顶盖的抑制性通路构成了峡核-顶盖之间的正负反馈回路.离顶盖通路中的神经元参与识别物体的运动、颜色、亮度和形状分辨等特征.  相似文献   

2.
鸟类和爬行类离顶盖通路的电生理研究   总被引:9,自引:1,他引:8  
用单位引导方法系统研究了鸽子,蛤蚧和石龙子的离顶盖通路单位反应特点。该通路视觉单位感受野较大;有照度和色觉两种光反应单位;在3种动物的圆核和蛤蚧的前背侧室嵴总共找到+B-Y,+R-G,+Y-B三种光谱拮抗单位;  相似文献   

3.
有关视觉相对运动的研究很少,根据实际观察且经数学推导证明:视觉相对速度是由运动观察者相对于被观察物体的位移的时间变化率所决定的.当运动观察者同时观察多个相对于地面静止的物体时,运动观察者很自然地以介于远近之间的物体为参照物来观察远、近的物体.这时的视觉相对运动由视觉相对速度所决定.研究视觉相对运动,可以让运动者尤其是高速运动者正确感知运动时周围的环境变化和物体的位置关系,以便做出正确的判断,防止重大交通事故的发生.该研究对高速驾驶航天飞船、列车和汽车具有指导意义,也具有尚未被人们认识的军事意义.  相似文献   

4.
静止物体的视觉形象不随时间改变,视网膜所感受的和照相底片所记录的相同。对于运动物体的视觉形象,由于视网膜对感受有持续性,它所感受的和照相底片所记录的会有不同。下面讨论物体的视觉形象时,指的是照相底片的记录而不是视网膜的感受。实际上照相机的曝光时间也会改变视觉形象,因此要假设使用理想的快速照相机。高速运动物体的视觉形  相似文献   

5.
将离体脑片技术用于研究家鸽顶盖 ,以微电极记录并分析了不同频率电刺激顶盖Ⅰ层引起的Ⅱa~f亚层的诱发电反应以及用含 10 -6mol/L的NMDA和D -α -AA人工脑脊液 (ACSF)灌流脑片后诱发电位所出现的变化 .表明D-α -AA能够阻断家鸽顶盖Ⅱa~f亚层内之突触传递 ,分布在Ⅱa~f亚层的视神经纤维末稍可能释放天冬氨酸 .  相似文献   

6.
针对单目视觉监测系统摄像机和目标物体同时运动时,如何有效测量物体三维运动参数的难题,提出一种基于单目序列图像对插入虚拟视点的算法确定运动物体位姿及运动参数的方法。动摄像机连续采集运动物体的图像序列,根据摄影几何原理对摄像机和运动物体进行分析,结合本质矩阵的特性,估算空间物体运动参数。实验结果表明,该方法能够在为摄像机与目标物体同时运动的情况下,有效地估测出物体三维运动参数,且该方法简单有效,具有较高的精确度和准确性。  相似文献   

7.
实际生活中,每时每刻都有千万种物体在进行运动,而这些不同的运动物体对不同的群体传达着不一样的视觉信息,对于群体来说,这些视觉信息给他们带来了重要的现实意义。然而在人们用视觉捕捉到的信息里,往往只对对自己有存在价值的运动目标或物体感兴趣,研究基于视频图像的运动目标的检测与跟踪,有很大的现实意义和实际价值。目前在实验室环境中已实现了对运动目标的检测和跟踪。在运动目标检测方面,参考理论,用帧间差分法得到基本完整可靠的运动目标;在运动目标跟踪方面,利用一种低复杂度的分块搜索算法,能对其进行仿真实验与编程实现。  相似文献   

8.
在差分得到的二值图像基础上,采用快速搜索算法确定运动物体,并用光流场方法跟踪运动目标。作者选择TMS320作为视觉跟踪系统的硬件平台,采用摄像机获取场景图像,通过软件捕捉场景图像中的运动物体,识别物体运动的方向和距离,实现了视觉实时跟踪功能。在此基础上,完成了分立器件构成的嵌入式视觉实时跟踪系统的设计,对于视觉技术的实际应用具有一定工程意义。  相似文献   

9.
针对运动车辆在单目视觉下轮廓重构的问题,本文通过特征目标识别的方法解算出无约束运动车辆的运动参数,将无约束运动物体的轮廓重构问题转化成已知约束运动物体的轮廓重构问题,提出了一种基于视频序列的单目视觉下的运动车辆轮廓重构算法.实验结果证明,新算法能够较好地重构出不同大小车辆的3D轮廓,其车辆高度估算值的误差在4%以内  相似文献   

10.
高速运动物体的长度在运动方向上要有收缩,这是观测的结果.其中,有二个问题:一是它给人的视觉形状,随运动情况、观察者位置的不同而不同,可能会比观测结果长一些,也可能短一些;二是包括对物体观测存在的视觉扭转量.这是两个值得深入进行讨论的疑点.  相似文献   

11.
Pack CC  Born RT 《Nature》2001,409(6823):1040-1042
A critical step in the interpretation of the visual world is the integration of the various local motion signals generated by moving objects. This process is complicated by the fact that local velocity measurements can differ depending on contour orientation and spatial position. Specifically, any local motion detector can measure only the component of motion perpendicular to a contour that extends beyond its field of view. This "aperture problem" is particularly relevant to direction-selective neurons early in the visual pathways, where small receptive fields permit only a limited view of a moving object. Here we show that neurons in the middle temporal visual area (known as MT or V5) of the macaque brain reveal a dynamic solution to the aperture problem. MT neurons initially respond primarily to the component of motion perpendicular to a contour's orientation, but over a period of approximately 60 ms the responses gradually shift to encode the true stimulus direction, regardless of orientation. We also report a behavioural correlate of these neural responses: the initial velocity of pursuit eye movements deviates in a direction perpendicular to local contour orientation, suggesting that the earliest neural responses influence the oculomotor response.  相似文献   

12.
Mixed parvocellular and magnocellular geniculate signals in visual area V4.   总被引:5,自引:0,他引:5  
V P Ferrera  T A Nealey  J H Maunsell 《Nature》1992,358(6389):756-761
Visual information from the retina is transmitted to the cerebral cortex by way of the lateral geniculate nucleus (LGN) in the thalamus. In primates, most of the retinal ganglion cells that project to the LGN belong to one of two classes, P and M, whose axons terminate in the parvocellular or magnocellular subdivisions of the LGN. These cell classes give rise to two channels that have been distinguished anatomically, physiologically and behaviourally. The visual cortex also can be subdivided into two pathways, one specialized for motion processing and the other for colour and form information. Several lines of indirect evidence have suggested a close correspondence between the subcortical and cortical pathways, such that the M channel provides input to the motion pathway and the P channel drives the colour/form pathway. This hypothesis was tested directly by selectively inactivating either the magnocellular or parvocellular subdivision of the LGN and recording the effects on visual responses in the cortex. We have previously reported that, in accordance with the hypothesis, responses in the motion pathway in the cortex depend primarily on magnocellular LGN. We now report that in the colour/form pathway, visual responses depend on both P and M input. These results argue against a simple correspondence between the subcortical and cortical pathways.  相似文献   

13.
ON and OFF pathways in Drosophila motion vision   总被引:1,自引:0,他引:1  
Joesch M  Schnell B  Raghu SV  Reiff DF  Borst A 《Nature》2010,468(7321):300-304
Motion vision is a major function of all visual systems, yet the underlying neural mechanisms and circuits are still elusive. In the lamina, the first optic neuropile of Drosophila melanogaster, photoreceptor signals split into five parallel pathways, L1-L5. Here we examine how these pathways contribute to visual motion detection by combining genetic block and reconstitution of neural activity in different lamina cell types with whole-cell recordings from downstream motion-sensitive neurons. We find reduced responses to moving gratings if L1 or L2 is blocked; however, reconstitution of photoreceptor input to only L1 or L2 results in wild-type responses. Thus, the first experiment indicates the necessity of both pathways, whereas the second indicates sufficiency of each single pathway. This contradiction can be explained by electrical coupling between L1 and L2, allowing for activation of both pathways even when only one of them receives photoreceptor input. A fundamental difference between the L1 pathway and the L2 pathway is uncovered when blocking L1 or L2 output while presenting moving edges of positive (ON) or negative (OFF) contrast polarity: blocking L1 eliminates the response to moving ON edges, whereas blocking L2 eliminates the response to moving OFF edges. Thus, similar to the segregation of photoreceptor signals in ON and OFF bipolar cell pathways in the vertebrate retina, photoreceptor signals segregate into ON-L1 and OFF-L2 channels in the lamina of Drosophila.  相似文献   

14.
van Ee R  Anderson BL 《Nature》2001,410(6829):690-694
The spatial differences between the images seen by the two eyes, called binocular disparities, can be used to recover the volumetric (three-dimensional) aspects of a scene. The computation of disparity depends upon the correct identification of corresponding features in the two images. Understanding what image features are used by the brain to solve this matching problem is one of the main issues in stereoscopic vision. Many cortical neurons in visual areas V1 (ref. 2), MT (refs 3, 4) and MST (refs 5, 6) that are tuned to binocular disparity are also tuned to orientation, motion direction and speed. Although psychophysical work has shown that motion direction can facilitate binocular matching, the psychophysical literature on the role of orientation is mixed, and it has been argued that speed differences are ineffective in aiding correspondence. Here we use a different psychophysical paradigm to show that the visual system uses similarities in orientation, motion direction and speed to achieve binocular correspondence. These results indicate that cells that multiplex orientation, motion direction, speed and binocular disparity may help to solve the binocular matching problem.  相似文献   

15.
H M Cooper  M Magnin 《Nature》1986,324(6096):457-459
The accessory optic system (AOS), which was described as early as 1870 by Gudden, constitutes a distinct midbrain visual pathway in all classes of vertebrates. In non-primate mammals, retinal fibres of this system project to a set of three nuclei: the dorsal (DTN), the lateral (LTN) and the medial (MTN) terminal nuclei. Whereas all AOS cells respond to the slow motion of large visual stimuli, the neurons are tuned to complementary directions of movement: horizontal temporo-nasal direction for the DTN, vertical up and down for the LTN and vertical down for the MTN. It has thus been suggested that these nuclei establish a system of retinal coordinates for the detection of whole field motion. As the AOS provides direct and indirect pathways to both oculomotor and vestibular structures, each of these nuclei is thought to be an essential link in the co-ordination of eye and head movements in relation to movement within the visual-field. One problem for the generalization of this theory is that the medial terminal nucleus has never been found in primates. In this report we establish both the existence of this nucleus and its afferent input from the retina in all major groups of primates (prosimians, New and Old World monkeys and apes), indicating a common anatomical plan of organization of the AOS in mammals.  相似文献   

16.
Nishida S  Johnston A 《Nature》1999,397(6720):610-612
After adaptation of the visual system to motion of a pattern in a particular direction, a static pattern appears to move in the opposite direction-the motion aftereffect (MAE). It is thought that the MAE is not accompanied by a shift in perceived spatial position of the pattern being viewed, providing psychophysical evidence for a dissociation of the neural processing of motion and position that complements anatomical and physiological evidence of functional specialization in primate and human visual cortex. However, here we measure the perceived orientation of a static windmill pattern after adaptation to rotary motion and find a gradual shift in orientation in the direction of the illusory rotation, though at a rate much lower than the apparent rotation speed. The orientation shift, which started to decline within a few seconds, could persist longer than the MAE, and disappeared when the MAE was nulled by physical motion of the windmill pattern. Our results indicate that the representation of the position of spatial pattern is dynamically updated by neurons involved in the analysis of motion.  相似文献   

17.
A Johnston  M J Wright 《Nature》1983,304(5925):436-438
Recent studies have revealed some remarkably simple relationships between visual performance and the neuroanatomy of the visual pathways. The visual field is mapped topographically on the surface of the striate cortex in man; the projection is large for the central visual field and is progressively compressed towards the periphery. Visual acuity decreases with distance from the fovea in proportion to the estimated cortical magnification factor, M (the extent of striate cortex in millimetres corresponding to a degree of arc in visual space). If a stimulus is magnified at peripheral locations in proportion to 1/M, it becomes equally resolvable across the visual field. This scaling procedure (M-scaling) maintains equivalence of the cortical projection of stimuli with different visual field loci. We have used M-scaling to investigate motion perception as a visual field variable. We report here that both the lower threshold of motion and adaptation to motion are uniform for M-scaled stimuli, and are related to the velocity of the 'cortical image'.  相似文献   

18.
Functions of the ON and OFF channels of the visual system   总被引:5,自引:0,他引:5  
P H Schiller  J H Sandell  J H Maunsell 《Nature》1986,322(6082):824-825
In the mammalian eye, the ON-centre and OFF-centre retinal ganglion cells form two major pathways projecting to central visual structures from the retina. These two pathways originate at the bipolar cell level: one class of bipolar cells becomes hyperpolarized in response to light, as do all photoreceptor cells, and the other class becomes depolarized on exposure to light, thereby inverting the receptor signal. It has recently become possible to examine the functional role of the ON-pathway in vision by selectively blocking it at the bipolar cell level using the glutamate neurotransmitter analogue 2-amino-4-phosphonobutyrate (APB)1. APB application to monkey, cat and rabbit retinas abolishes ON responses in retinal ganglion cells, the lateral geniculate nucleus and the visual cortex but has no effect on the centre-surround antagonism of OFF cells or the orientation and direction selectivities in the cortex2-5. These and related findings6-11 suggest that the ON and OFF pathways remain largely separate through the lateral geniculate nucleus and that in the cortex, contrary to some hypotheses, they are not directly involved in mechanisms giving rise to orientation and direction selectivities. We have examined the roles of the ON and OFF channels in vision in rhesus monkeys trained to do visual detection and discrimination tasks. We report here that the ON channel is reversibly blocked by injection of APB into the vitreous. Detection of light increment but not of light decrement is severely impaired, and there is a pronounced loss in contrast sensitivity. The perception of shape, colour, flicker, movement and stereo images is only mildly impaired, but longer times are required for their discrimination. Our results suggest that two reasons that the mammalian visual system has both ON and OFF channels is to yield equal sensitivity and rapid information transfer for both incremental and decremental light stimuli and to facilitate high contrast sensitivity.  相似文献   

19.
Current views of the visual system assume that the primate brain analyses form and motion along largely independent pathways; they provide no insight into why form is sometimes interpreted as motion. In a series of psychophysical and electrophysiological experiments in humans and macaques, here we show that some form information is processed in the prototypical motion areas of the superior temporal sulcus (STS). First, we show that STS cells respond to dynamic Glass patterns, which contain no coherent motion but suggest a path of motion. Second, we show that when motion signals conflict with form signals suggesting a different path of motion, both humans and monkeys perceive motion in a compromised direction. This compromise also has a correlate in the responses of STS cells, which alter their direction preferences in the presence of conflicting implied motion information. We conclude that cells in the prototypical motion areas in the dorsal visual cortex process form that implies motion. Estimating motion by combining motion cues with form cues may be a strategy to deal with the complexities of motion perception in our natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号