首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
工艺条件对电积法制备铜粉的影响   总被引:1,自引:0,他引:1  
采用不溶阳极电积法制备铜粉,研究了Cu2+质量浓度、硫酸质量浓度、电流密度、电解液温度和刮粉周期对电积过程和铜粉中位粒径的影响.结果表明:优化工艺为Cu2+质量浓度15 g.L-1、硫酸质量浓度140 g.L-1条件下,控制电流密度为1 800 A.m-2、温度为35℃、刮粉周期为30min、循环流量为14 L.h-1以及极距为4.5 cm,可得到高品质的铜粉,其粒度呈正态分布,微观形貌呈树枝状;增加铜离子质量浓度、硫酸质量浓度和电解液温度有利于降低槽电压;增加Cu2+质量浓度、电解液温度和刮粉周期有利于提高电流效率;大电流密度、高硫酸质量浓度和低Cu2+质量浓度有利于得到粉末粒度小的铜粉.  相似文献   

2.
采用化学镀法制备镍包铜复合粉末,通过研究化学镀过程中还原剂、络合剂及稳定剂的质量浓度、温度、pH值等因素对沉积速率的影响规律得出化学镀镍的优化条件.利用XRD、SEM和EDS等测试手段对优化条件下制备的复合粉末进行表征.研究结果表明:当硫酸镍质量浓度30g·L-1,铜粉质量浓度10g·L-1,联氨质量浓度60g·L-1,柠檬酸钠质量浓度50g·L-1,硫脲质量浓度10~20mg·L-1,控制温度80~90℃,pH=10,超声功率50W时,镀层沉积速度较快,复合粉末表面镍包覆层均匀,包覆层厚度为0.29μm.  相似文献   

3.
高电流密度电解对阴极铜质量的影响   总被引:4,自引:1,他引:3  
在铜电解液中加入亚砷酸铜净化脱除锑和铋,当电解液中As质量浓度从6 g/L增加到12 g/L后,电解液中锑和铋的质量浓度分别从0.65和0.15 g/L降到0.30和0.07 g/L,锑、铋去除率分别达到53.85%和53.33%.铜电解液净化后,在铜离子质量浓度为45~50 g/L,硫酸质量浓度为180~210 g/L,电解液温度为65 ℃时,电流密度为300 A/m2条件下进行电解得到的阴极铜达到高纯阴极铜质量标准(GB/T 467-1997).连续电解7 d所得阴极铜铜质量分数为99.996 0%,阴极电流效率为99.1%.电解液中砷、锑、铋质量浓度分别为13.65,0.36和0.075 g/L.电解过程中56.2%锑、88.3%铋进入阳极泥,而78.8%的砷进入电解液.电解3 d后,铜离子质量浓度从45上升到51 g/L,硫酸质量浓度从210下降到175 g/L,槽电压从0.21上升到0.27 V,采用脱铜补酸处理可维持电解的正常进行.  相似文献   

4.
影响过氧化氢催化分解速率的因素   总被引:1,自引:0,他引:1  
在不同的pH值和不同的温度下,用碘化钾作催化剂,对过氧化氢分解速率进行实验测定,结果发现:碘化钾含量越高,反应的速率常数越大,且随着温度的升高,在相同催化剂浓度下,速率常数呈指数增大;速率常数在pH值为7时为最大;改变反应体系的温度对催化分解的影响远大于改变反应体系的酸度与改变KI浓度所产生的影响.  相似文献   

5.
采用超高效液相色谱法(UPLC),研究初始质量浓度1μg·m L-1二硫氰基甲烷在不同温度、p H值、COD值水体条件下的消除规律.结果表明:在5~35℃水温范围内,二硫氰基甲烷的消除速率为:V35℃V25℃V15℃V5℃,35℃水体中,第20天二硫氰基甲烷未被检出.在p H 5.0~9.0的水中二硫氰基甲烷的平均消除速率为:Vp H9.0Vp H8.5Vp H8.0Vp H7.5Vp H7.0Vp H6.5Vp H6.0Vp H5.5Vp H5.0,平均消除速率随着p H值的升高而变大,酸性条件下稳定,不易分解,p H≥8.0的弱碱性条件下极易分解.在COD值为0~30 mg·L-1的水中二硫氰基甲烷的平均消除速率表现为:V30 mg·L-1V20 mg·L-1V10 mg·L-1V0 mg·L-1,二硫氰基甲烷的消除速率随着COD值的增大而变大.  相似文献   

6.
利用稳定同位素13C技术,通过设置两种温度的恒温培养实验,研究了外源碳(13C-Glucose)在土壤中的分配规律、以及土壤有机碳(SOC)、轻组有机碳(LFOC)和重组有机碳(HFOC)的分解速率.培养温度分别为15℃和25℃,培养时间为112 d.结果表明:两个温度培养条件下,葡萄糖标记的13C进入SOC、LFOC和HFOC的比例随着培养时间而呈递减趋势,培养结束时标记的13C依然有18.9%~22.0%残留于土壤中.培养时段内,SOC的分解速率常数为4.4×10-4~9.7×10-4d-1,HFOC的分解速率常数为3.4×10-4~7.0×10-4d-1,而LFOC的分解速率常数介于1.1×10-3~4.6×10-3d-1之间.总之,外源碳显著影响了人工杉木林土壤有机碳组分的分解速率.在有外源碳输入的条件下,升温加快了LFOC的分解,但抑制了HFOC的分解.因此,在供试土壤中,LFOC可能会比HFOC对全球变暖的响应更敏感.  相似文献   

7.
阴离子油性添加剂对铝酸钠溶液晶种分解的影响   总被引:1,自引:1,他引:0  
考查了脂肪酸类阴离子表面活性剂与二十一碳烷不同配比和不同添加量对铝酸钠溶液分解产生的氢氧化铝的粒度、强度及分解率的影响,并探讨了与之相关的机理·实验表明:脂肪酸质量分数在15%~49%的油性添加剂,添加量为50×10-6~150×10-6g·L-1时,可以增加氢氧化铝的粒度,降低细粒子分布,提高粒子的强度,略降低分解率;当添加剂中脂肪酸质量分数为32%时,添加量为150×10-6g·L-1时,其综合性能优于国外同类产品·  相似文献   

8.
巴沙鱼皮明胶提取工艺研究   总被引:4,自引:0,他引:4  
对巴沙鱼皮制备明胶工艺过程中,硫酸质量分数、硫酸处理时间、明胶提取料液比、提取温度、提取时间等因素进行了系统研究,在此基础上通过正交试验确定最佳工艺为1%浓度的硫酸处理12 h,提取时间为4 h,料液比为1∶6,提取温度为50℃.在此工艺条件下,明胶得率为75.15%,明胶粘度为3.66 mPa.s,凝胶强度为234 g.  相似文献   

9.
化学法制备微米铜粉的研究   总被引:4,自引:0,他引:4  
在NH3-NH4Cl体系中,以NH3为配合剂,利用铜自身的还原作用,通过岐化反应制备微米级铜粉,其中一定比例的铜粉粒度接近纳米级,在空气中相当稳定.NH3的浓度及pH值的控制对反应有重要影响,最佳反应条件是:反应温度为40℃,pH为11.4,NH 4的浓度为0.1mol·L-1,NH3的浓度为12.5mol·L-1;硫酸的浓度和酸化的时间影响产物的粒度,硫酸的质量分数为20%,加酸流速为4mL/min时,产物粒度最小.  相似文献   

10.
利用CP-150萃取剂萃取碱性蚀刻废液中的铜,并利用硫酸进行反萃取。考察不同因素对萃取和反萃取的影响。萃取实验表明,铜的萃取率随着萃取剂浓度和相比增大而增大,随着料液铜浓度的升高而降低。反萃实验表明,反萃速率随着硫酸反萃液浓度的增大而增大。  相似文献   

11.
针对现行的湿法炼锌渣中提取锗的研究现状,采用新型萃取剂HBL101从锌置换渣的高酸浸出液中直接萃取锗,考察了料液酸度、萃取剂体积分数、萃取温度、萃取时间和相比对萃取的影响以及氢氧化钠质量浓度、反萃温度、反萃时间和反萃相比对反萃的影响,并对萃取剂转型条件进行了研究.实验表明:有机相组成为30% HBL101+70%磺化煤油(体积分数)作为萃取剂,料液酸度为113.2 g·L-1 H2 SO4,其最佳萃取条件为萃取温度25℃,萃取时间20 min,相比O/A=1:4.经过五级逆流萃取,锗萃取率达到98.57%.负载有机相用150 g·L-1 NaOH溶液可选择性反萃锗得到高纯度锗酸钠溶液,其最佳反萃条件为反萃温度25℃,反萃时间25 min,相比O/A=4:1.经过五级逆流反萃,反萃率可达到98.1%.反萃锗后负载有机相再用200 g·L-1硫酸溶液反萃共萃的铜并转型,控制反萃温度25℃,反萃时间20 min,O/A=2:1.经过五级逆流反萃,铜反萃率可达到99.5%并完成转型,萃取剂返回使用.  相似文献   

12.
进行了光Fenton体系催化氧化降解染料孔雀石绿(MG)水溶液的研究,考察了光、pH值、Fe2+和H2O2投加量等因素以及阴离子的存在对MG降解率的影响。结果表明,室温(20 OC)下,pH=3.5±0.1、[Fe2+]0=0.25mmol/L、[H2O2]0=0.5mmol/L的条件下,经氙灯(λ > 290 nm)照射30 min后,MG水溶液(15 mg/L)的降解率达到95%以上。Cl-的存在对MG在光Fenton体系中的降解有阻碍作用,SO42-的存在对反应基本没影响,而NO3-促进了MG的氧化降解速率。  相似文献   

13.
紫外线对微囊藻毒素-RR降解动力学拟合   总被引:1,自引:0,他引:1  
探讨了反应时间、初始pH值、紫外线(UV)辐射强度、温度及初始质量浓度等因素对UV去除微污染水体中微囊藻毒素RR(MC RR)效果的影响.研究表明:MC RR的降解率随反应时间的延长及UV辐照度的增大而提高;pH对其降解具有重要作用,中性和弱酸性环境有利于MC RR的降解,当pH值为5时,UV对MC RR的降解效果最佳,强酸性和强碱性环境对UV降解MC RR起抑制作用;UV对MC RR的降解率随温度的升高而提高,且呈线性关系;从降解动力学角度考察,符合二级动力学模型,速率常数随MC RR溶液初始质量浓度的降低而加快.在10 ℃、辐照度为153 μW·cm-2的中性(pH=7.00)环境中,UV辐射时间在160 min时可将初始质量浓度为251.778 3 μg·L-1的MC RR溶液降解至0.801 2 μg·L-1,UV对MC RR溶液的去除率可达99.68%.  相似文献   

14.
在甲磺酸镀液中电沉积Pb-Zn镀层,采用体积分数为10%的H2SO4腐蚀镀层使锌溶出,得到Pb-Zn多孔电极.通过线性扫描伏安法和恒电位阶跃实验分析多孔Pb-Zn电极的电化学性质,表明电极对顺丁烯二酸电还原合成丁二酸具有较好的电催化活性.研究无膜电合成丁二酸,探讨硫酸浓度、电流密度、初始顺丁烯二酸浓度、温度对电流效率的影响,得到合适的阴极电解条件,即在硫酸浓度为1.0mol·L-1,初始顺丁烯二酸浓度为1.0~1.5mol·L-1,电流密度为100mA·cm-2,反应温度为50~60℃时,电流效率超过88%.  相似文献   

15.
以胶体壳聚糖为唯一碳源和DNS酶活鉴定法从烟台近海土壤中分离得到一株高产壳聚糖酶菌株,初步鉴定为白色链霉菌.经发酵培养组分与条件优化,获得最佳培养组分(g.L-1):葡萄糖55,壳聚糖0.5,胰蛋白胨1,尿素8,(NH4)2SO42,NH4Cl 1,KH2PO43,FeSO4·7H2O 1,ZnSO4·7H2O 2,CaCl2·6H2O2,MnSO4·H2O2,NaCl2.最适产酶pH 7.0,温度28℃,装液量50 mL,接种量2%.优化后菌株培养48 h时产酶量为51.65 U.mL-1.  相似文献   

16.
用普鲁士蓝与过氧化氢作为类-Fenton试剂,在波长大于420 nm的可见光辐射下研究了罗丹明B的光催化降解规律。实验表明:普鲁士蓝与过氧化氢形成的Fenton体系对罗丹明B有显著的降解作用,在没有电解质存在下,9.0 mg·L-1的罗丹明B经过120 min的降解,其降解率达到64.0%,其降解动力学符合一级反应动力学方程。加入KNO3,KCl,KBr,K2SO4电解质后,反应速率有不同程度的影响,在保持钾离子浓度相同的情况下,阴离子对罗丹明B降解速率的影响从大到小的顺序是SO42-〉Br-〉Cl-〉NO3-,其中在0.05 mol·L-1硫酸钾溶液中40 min时罗丹明B的降解率达到了97.0%。  相似文献   

17.
(光)助电-Fenton降解有机染料罗丹明B   总被引:2,自引:2,他引:0  
以高纯石墨电极为阴极,铁片为阳极,Na2SO4溶液为支持电解质,通过阳极氧化提供Fe^2+/Fe^3+和阴极还原溶解氧转化为H2O2而形成Fenton体系,以降解有机染料罗丹明B(RhodamineB,RhB)为探针反应,研究了外加电压、铁电极面积(电荷密度)、极间距、电解质溶液浓度及外加紫外光照射(300 nm〈λ〈380n m)等因素对RhB降解反应的影响.结果表明:外加电压为7 V,铁片面积为3 cm^2(电荷密度为0.045 A/cm^2),电极之间距离为4 cm,Na2SO4质量浓度为10 g/L时,反应100 min后RhB褪色完全.采用过氧化物酶催化反应吸光光度法和苯甲酸荧光分析法分别跟踪测定RhB降解反应过程中H2O2和羟基自由基(·OH),表明RhB降解过程涉及·OH历程.通过分析测定RhB降解过程TOC变化和红外光谱分析,表明染料降解反应不仅仅为简单褪色而且深度氧化,180 min矿化率为73.0%.  相似文献   

18.
臭氧氧化降解微囊藻毒素-LR的动力学研究   总被引:5,自引:0,他引:5  
采用臭氧对微囊藻毒素 - LR(MC LR)进行降解试验,研究其反应动力学.取自无锡太湖流域蓝藻藻华提取藻毒素,研究了臭氧投加量、MC LR的初始质量浓度、pH值及一些阴离子作用对降解速率的影响.结果表明,臭氧氧化能有效降解MC LR,且符合准一级动力学反应.降解速率不受MC LR初始质量浓度的影响.当臭氧投加量由0.31 mg·L-1增加到1.35 mg·L-1时,MC-LR的降解速率由0.010 3 min-1提高到0.040 7 min-1.当pH值由3.08升高到10.08时,MC-LR的降解速率由0.252 8 min-1降低到0.009 9 min-1.在酸性条件下,pH值的变化对降解速率的影响程度更大.在阴离子影响方面,NO-3有利于MC-LR的降解,CO2-3阻碍降解,SO2-4和Cl-对降解速率的影响不明显,其反应速率常数由大到小的次序是:NO-3,Cl-,SO2-4,CO2-3.  相似文献   

19.
采用响应面法优化产朊假丝酵母CU-6的枇杷酒降酸工艺,应用中心组合Box-Benhnken实验设计进行响应面分析,建立数学模型.结果表明:经优化后的产朊假丝酵母CU-6降酸最佳工艺参数SO2质量浓度为50mg·L-1,酒精度为7.8%,残糖质量浓度为4.3g·L-1,在苹果酸质量浓度为4.5g·L-1,接种量为1.5%,发酵温度为24℃,发酵周期为5d的条件下,枇杷酒的理论降酸量可达到1.82g·L-1.采用优化后的工艺枇杷酒的降酸量达到(1.80±0.02)g·L-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号