首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
考察了丙烯醛水舍及3-羟基丙醛加氢制1,3一丙二醇的工艺条件。在装有阳离子交换树脂催化剂的固定床层反应中,当ACR的质量分数为12~15%,反应空速为5~6h-1,反应温度为50℃,并加入少量对苯二酚阻聚剂时,ACR的单程转化率为80%,3-HPA的选择性可达87.5%。在高压釜进行3-羟基丙醛加氢催化剂筛选。结果表明使用四元合金制备的Raney Ni催化剂,在一段加氢温度为45℃,二段加氢温度为120℃,氢气压力为6MPa,搅拌转速500r。min-1时,3-HPA的转化率≥98%,产物1,3一丙二醇收率接近100%。  相似文献   

2.
3-羟基丙酸甲酯催化加氢是合成1,3-丙二醇的一种重要反应,具有工业应用前景.本研究对该反应及其涉及的副反应进行了热力学计算.采用Benson、Joback和Constantinou-Gani 3种基团贡献法,计算了上述反应目前尚缺失的热力学数据.按照Gibbs-Helmholtz方程绘制了相关反应的热力学平衡常数的对数值(lg k)与温度的变化曲线,其中Benson法所得结果与实验结果较好吻合.依据Benson法计算的平衡常数,绘制了压力和温度、压力和氢酯比、底物浓度分别对3-羟基丙酸甲酯加氢合成1,3-丙二醇反应平衡转化率的关系曲面和曲线图,并讨论了上述参数变化对反应的影响.计算数据显示,高压、高氢酯比、低温和低液时空速有利于3-羟基丙酸甲酯向1,3-丙二醇的转化,该结果与实验数据吻合.  相似文献   

3.
在有氧条件下,利用DEAE Sepharose Fast Flow弱阴离子离子交换层析和Blue Sepharose CL-6B亲和层析,同时分离并提纯克雷伯杆菌胞内的1,3-丙二醇氧化还原酶和甘油脱氢酶.研究表明,1,3-丙二醇氧化还原酶的纯化倍数为35.86倍,回收率为5.17%,该酶最适表观反应温度为57 ℃,最适反应pH值为9.5.在30 ℃及pH=8.0~10.0时,该酶具有良好的稳定性.在45 ℃和pH=9.5条件下,该酶以1,3-丙二醇和NAD+为底物,其米氏常数Km分别为15.8,0.2 mmol·L-1.1,3-丙二醇氧化还原酶对生理反应底物3-羟基丙醛活性最大,对其他醇类也有氧化能力.Mn2+对酶有显著激活作用,巯基保护剂能明显提高酶的活力.  相似文献   

4.
用改进的柠檬酸络合法制备了CuO//La2O3/γ-Al2O3催化剂,并通过XRD、NH3-TPD技术对样品进行了表征,探索其对乙二胺(ED)和1,2-丙二醇(PG)为原料合成2-甲基吡嗪(2-MP)反应的催化活性。分别考察了催化剂不同金属配比、煅烧温度以及反应温度、气体空速等对催化剂活性的影响。结果表明:当铜铝摩尔比为4∶6,煅烧温度为700℃时催化剂的催化性能最好;在原料液中1,2-丙二醇、乙二胺和水的摩尔比为1∶1∶2、反应温度为320℃、气体空速(GHSV)1 815 h-1的条件下,1,2-丙二醇的转化率为100%,2-甲基吡嗪的收率为82.7%。  相似文献   

5.
制备不同Nd2O3质量分数的2% Pt/Nd2O3-WO3/ZrO2催化剂.通过N2物理吸附,NH3程序升温脱附(NH3-TPD)、H2程序升温脱附(H2-TPD)、CO脉冲吸附等方法表征催化剂的物理化学性质.用固定床连续流动反应器考察催化剂对甘油氢解制1,3-丙二醇反应的催化性能.结果表明,引入Nd2 O3提高了催化剂的H2吸附量,进而提高了催化剂的催化活性;焙烧温度对催化剂性能有重要影响.在4 MPa、130℃、质量分数为60%甘油水溶液进料、液体体积空速(LHSV)0.25 h-1反应条件下,2% Pt/0.25NdWZ (700,450)催化剂催化甘油氢解反应,甘油转化率为75.2%,1,3-丙二醇产率达28.9%,产物中n(1,3-丙二醇)/n(1,2-丙二醇)达到21.9.  相似文献   

6.
以磷钨杂多酸为钨前驱体用浸渍法制备系列具有不同Pt含量和不同HPW/ZrO2焙烧温度的Pt/HPW/ZrO2催化剂。通过BET比表面积、红外光谱和X线衍射方法表征催化剂的结构,在连续流动固定床反应器中考察其对甘油水溶液催化脱氧制取1,3-丙二醇(1,3-PDO)反应催化性能的影响。结果表明:ZrO2负载磷钨杂多酸经500℃以上温度处理,磷钨杂多酸分解为相应的氧化物,单斜相WO3和磷氧化物分散在ZrO2表面。Pt/HPW/ZrO2催化剂对甘油脱氧反应具有较高的催化活性。铂负载量、HPW/ZrO2焙烧温度、反应温度、压力及甘油浓度等因素的变化,对甘油转化率和1,3-PDO收率的影响较大。在4 MPa、130℃、液体体积空速(LHSV)为0.25 h-1的反应条件下,2.0%Pt/HPWZ10(700)催化剂上60%甘油水溶液催化脱氧反应可得到53.4%甘油转化率和44.5%的1,3-PDO选择性,产物中1,3-PDO与1,2-丙二醇(1,2-PDO)摩尔比值达到14.3。100 h稳定性实验表明催化剂性能稳定。  相似文献   

7.
以Al(OH)_3为铝源,用分步浸渍-焙烧法制备介孔钨铝复合氧化物负载铂催化剂。在连续流动固定床反应器中,考察催化剂催化甘油氢解制备1,3-丙二醇(1,3-PDO)的催化性能与稳定性。通过N2物理吸附、X线衍射(XRD)方法表征反应前后催化剂的结构。结果表明:介孔钨铝复合氧化物负载铂催化剂的平均孔径为16 nm,催化剂在甘油氢解反应中呈现良好的催化活性。催化剂焙烧温度、反应温度、甘油质量空速(WHSV)及甘油水溶液浓度等因素变化对1,3-丙二醇产率及甘油转化率有较大影响。在160℃、4 MPa、60%甘油水溶液进料、甘油质量空速为0.25 h~(-1)、H_2与甘油摩尔比为100∶1的条件下,介孔钨铝复合氧化物负载铂催化剂催化甘油氢解反应,甘油转化率为54.1%,1,3-丙二醇的产率与选择性分别为26.2%与50.3%。催化剂长期稳定性良好。  相似文献   

8.
[目的] 3-羟基丙酸酯加氢制备1,3-丙二醇(1,3-PDO)过程中存在β-羟基脱除等副反应,导致1,3-PDO的选择性和收率不高,其中高效催化剂的开发是解决该问题的关键.[方法]采用蒸氨法制备了不同添加量La修饰的20Cu/SiO2催化剂,对其进行催化性能评价,并通过H2程序升温还原(H2-TPR)、X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和N2物理吸附-脱附对其进行表征.[结果] 20Cu-0.50La/SiO2的催化性能最佳,它显著地提高了3-羟基丙酸甲酯(3-HMP)加氢制1,3-PDO的催化活性和稳定性,其中3-HMP转化率为91.8%,1,3-PDO的选择性和收率分别为85.2%和78.2%.这是在高液时空速(LHSV=0.10 h-1)的条件下取得的最佳结果.[结论] La的加入与Cu产生了强相互作用,增强了催化剂中Cu的分散性,同时提高了Cu+物种表面浓度,使活性Cu的比表面积增加,...  相似文献   

9.
以二甘醇为起始原料,经羟基保护,Michael加成,催化加氢反应合成目标化合物2-[2-(3-氨基丙氧基)乙氧基]乙醇;优选Michael加成催化剂为LiOH·H_2O;优选加氢催化剂为Sponge Co,反应压力为6.0 MPa,反应温度为80℃,总收率46%.  相似文献   

10.
以Al2O3为载体、Ru为活性组分合成Ru/Al2O3。以Ru/Al2O3为催化剂,在反应釜中液相催化加氢催化对苯二甲酸二甲酯(DMT)制备1,4-环己烷二甲酸二甲酯(DMCD),考察Ru负载量、反应温度、压力、搅拌速率和反应时间对DMT加氢反应性能的影响。采用X线衍射仪(XRD)、N2吸附-脱附仪、H2-程序升温脱附(H2-TPD)技术和扫描电子显微镜(SEM)对催化剂理化性能进行表征。结果表明:Ru质量分数为3%的Ru/Al2O3显示出良好的催化活性。适宜催化剂的活化温度为120℃,在95℃、4.5 MPa和搅拌速率1 200 r/min的条件下加氢反应3 h,DMT转化率和DMCD选择性分别高达100%和98.81%。该催化剂循环使用12次后仍未发现明显失活。  相似文献   

11.
环氧乙烷催化合成3-羟基丙酸甲酯的研究   总被引:4,自引:0,他引:4  
提出以3-羟基吡啶为配体的Co2(CO)8催化剂,由环氧乙烷的氢酯基化生产3-羟基丙酸甲酯的工艺,表明该工艺路线可行.并考察了反应温度、反应压力以及甲醇溶剂的量对环氧乙烷羰基合成3-羟基丙酸甲酯反应的影响.结果表明:较优工艺条件为:反应温度70℃;反应压力7.0MPa;n(甲醇):n(环氧乙烷)=4.5.在此条件下,原料的转化率达到92%~100%,产率达到87.3%~91.4%.  相似文献   

12.
以(R)-(-)-3-氯-1,2-丙二醇为原料合成了医药中间体(R)-(-)-3-氯-2-羟丙基对甲苯磺酸酯,探讨了反应温度、反应时间、溶剂种类及用量、催化剂种类及用量,以及原料配比等因素对反应的影响.通过正交试验确定了适宜的合成工艺条件:反应温度0℃;反应时间6 h;对甲苯磺酰氯与(R)-(-)-3-氯-1,2-丙二醇摩尔比为1.2∶1;催化剂NaOH与(R)-(-)-3-氯-1,2-丙二醇的摩尔比为1.2∶1;以乙酸乙酯为溶剂,(R)-(-)-3-氯-1,2-丙二醇浓度为125 g/L.在此工艺条件下产物得率大于85%.  相似文献   

13.
制备一系列硅胶(SiO2)负载的磷钨酸铯盐催化剂,将其用于香兰素与1,2-丙二醇的缩合反应,合成香兰素丙二醇缩醛,考察催化剂中Cs+取代数、磷钨酸铯盐负载量、催化剂用量、1,2-丙二醇与香兰素摩尔比及反应时间对缩合反应的影响.结果表明:磷钨酸铯盐的Cs+取代数为2.5、负载量为40%时催化剂活性最高;在反应温度368 K、n(1,2-丙二醇)/n(香兰素)=2.4、催化剂用量占反应体系质量分数1.5%、带水剂苯的用量30 mL、回流反应3 h的条件下,香兰素的转化率达到86.6%,香兰素丙二醇缩醛的选择性为100%.  相似文献   

14.
将9,9-二(4-羟基苯基)呫吨与质量浓度为20;的稀硝酸在10~15℃下发生硝化反应约3 h,以86.5;的产率合成了中间体9,9-二(3-硝基-4-羟基苯基)呫吨,然后以10;的 Pd/ C 和甲醇为催化剂/溶剂体系,采用加氢还原方法,在75~80℃将中间体还原得到9,9-二(3-氨基-4-羟基苯基)呫吨,产率为92.7;,2步反应总收率为80.2;,并用1 H NMR、IR 和元素分析等方法证实了上述2种化合物的结构.  相似文献   

15.
以空气为氧化剂,在温和的条件下,研究三氧化铝负载下催化氧化3-氧代-α-紫罗兰酮合成1-羟基-4-氧代-α-紫罗兰酮的反应,考察制备过程中反应温度、反应时间、空气湿度、Al2O3用量和Al2O3酸碱性等对反应的影响。反应产物用CHCl3-CH3OH混合溶剂进行洗涤与催化剂分离,目标产物结构经GC-MS和1HNMR等测试技术进行表征。研究结果表明:在此催化体系中,室温条件下,以粒度为37.5~75.0μm的中性或碱性Al2O3为载体,氧化铝和反应底物的质量比为10:1,通入未经干燥的空气充分反应20 h后,3-氧代-α-紫罗兰酮转化率可到100%,目标化合物1-羟基-4-氧代-α-紫罗兰酮收率达85%;催化剂循环使用重复性良好。  相似文献   

16.
目的自制H4SiW12O40(硅钨酸)-PAn(聚苯胺)环境友好催化剂并进行有机物合成应用研究。方法通过FT-IR,XRD和TG/DTA手段对自制催化剂进行表征,以苯甲醛和1,2-丙二醇为原料合成4-甲基-2-苯基-1,3-二氧戊烷,探讨H4SiW12O40-PAn催化剂对缩醛反应的催化活性,较系统地研究了原料量比,催化剂用量,反应时间诸因素对产品收率的影响。结果在n(苯甲醛)/n(1,2-丙二醇)=1/2.0,催化剂用量为反应物料总质量的0.5%,环己烷为带水剂,反应时间45 min的优化条件下,4-甲基-2-苯基-1,3-二氧戊烷的收率可达87.4%。结论实验结果表明,H4SiW12O40-PAn是合成苯甲醛1,2-丙二醇缩醛的良好催化剂。  相似文献   

17.
发酵液中1, 3-丙二醇的萃取分离   总被引:8,自引:0,他引:8  
1,3-丙二醇是新型聚酯PTT的主要原料之一.为解决传统的精馏法提取1,3-丙二醇能耗过大的问题,研究了萃取法自稀溶液中分离1,3-丙二醇的过程.结果表明,普通物理萃取和络合萃取法均不能有效分离1,3-丙二醇.在强酸性树脂催化下,通过加入乙醛与1,3-丙二醇发生可逆缩醛反应生成2-甲基-1,3-二烷和甲苯同步萃取反应产物的反应-萃取耦合方法,可以有效分离稀溶液中1,3-丙二醇, 1,3-丙二醇的总转化率为99.1%, 2-甲基-1,3-二烷的收率为91.2%, 分配系数为3.35. 1,3-丙二醇稀溶液的反应萃取过程具有良好的工业可行性.  相似文献   

18.
利用环氧丙烷废液常压下制备丙二醇,对影响转化率的原料配比,反应温度和反应时间以及催化剂的用量进行了研究,得到最佳反应条件为:物料配比为3:1,反应温度为70℃,反应时间为6小时,催化剂的量是二氯丙烷物质量的0.05倍.在此条件下的最高收率能够达到77.46%.  相似文献   

19.
研究环戊二烯二聚体在雷尼镍催化剂存在下加氢合成桥式四氢双环戊二烯的反应条件,本文对温度、压力、时间及催化剂重复使用情况进行了实验考查,实验结果表明,在雷尼镍催化剂存在下,溶剂与环戊二烯二聚体的质量比2∶1、反应温度110~120℃、氢气压力3.5~4.0 MPa下反应4 h,加氢反应转化率为100%,桥式四氢双环戊二烯的收率在96%以上,纯度98.3%。随反应次数增加,催化剂活性降低,反应3次以后需要补充新鲜催化剂。  相似文献   

20.
以活性炭负载SnCl4·5H2O为催化剂,利用微波技术合成8种2,2-二羟甲基-1,3-丙二醇双缩醛(酮),其中,2,2-二羟甲基-1,3-丙二醇双缩辛醛属新化合物.采用元素分析、傅里叶转换红外光谱(FTIR)和氢核磁共振1H NMR对产物进行表征.以苯甲醛与2,2-二羟甲基-1,3-丙二醇的缩合为模型反应对工艺条件进行优化,得其优化反应条件为催化剂负载量20%,催化剂用量0.25 g,2,2-二羟甲基-1,3-丙二醇4 g(30 mmol),苯甲醛66 mmol,微波功率600 W,辐射时间1.5 min,产率89.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号