首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
微细电火花加工的底面轮廓模型及定长补偿方法   总被引:2,自引:0,他引:2  
针对三维金属微细结构的微细电火花加工,应用等损耗理论,采用分层加工方法建立了单道加工时底面形状随电极损耗变化的轮廓模型.在此基础上,提出定长补偿的方法,给出了补偿长度计算公式,并对底面轮廓模型以及定长补偿方法进行仿真分析.实验测定了微细条件下钨打钢的相对体积损耗比,进行了无补偿和定长补偿的实验加工.仿真及实验结果表明:无补偿时底面轮廓呈指数曲线,与实验结果相吻合;定长补偿方法加工的底面轮廓为恒定的波动曲线;随着补偿精度增加,底面轮廓的波动范围增大;在符合端面损耗理论的范围内,分层厚度越大,加工的相对误差越小.所提出的定长补偿方法提高了加工尺寸精度和形状精度.  相似文献   

2.
为解决微细电火花三维加工中存在的电极损耗问题,提出了一种使线性补偿法与均匀损耗法相结合的新的补偿方法.加工实验结果表明,使用这一新补偿方法可明显提高三维微细电火花加工的加工效率和底面粗糙度,并且减少电极损耗.与均匀损耗法相比,电极损耗长度可减少17.8%,表面粗糙度可降低9.9%,材料去除速率可提高10.1%.  相似文献   

3.
内螺旋齿轮电火花加工的研究和参数设计   总被引:1,自引:0,他引:1  
针对淬火钠内螺旋齿轮难加工的问题,讨论了淬火钢内螺旋齿轮电火花加工的方法和装置的设计,分析研究了淬火钢内螺旋齿轮加工的特点和加工原理,分析了工具电极齿轮的修形设计和误差补偿技术,推导了相应的计算公式,并进行了该装置的误差分析。由分析研究得出:电火花加工较好地解决了这类在材质和形状上均有特殊性的齿轮加工问题;考虑放电间隙和电极损耗,工具电极是被加工齿轮的变位和修形齿轮;通过误差补偿和螺旋机构的误差控制可提高电火花加工内螺旋齿轮的加工精度。  相似文献   

4.
微细电火花加工装置及其控制技术   总被引:1,自引:0,他引:1  
设计开发出了具有四轴三联动的微细电火花加工装置.针对该装置,对微细电极的制作控制技术、成型加工的伺服控制和微三维结构加工过程中电极损耗的补偿控制等进行了深入研究.在充分分析伺服机构性能的基础上,提出针对不同加工目的采用不同的伺服控制策略,不仅解决了伺服机构在微位移进给过程中存在的爬行问题,同时也较好地解决了电极制作过程中存在的伺服振荡问题;对电极损耗的补偿控制技术进行了深入的研究,进而提出了电极损耗的在线补偿策略,该补偿策略作为微细电火花加工控制系统的一个组成部分,使电极损耗的补偿与微细铣削加工的CAD/CAM系统分开,大大提高了微细电火花进行三维微结构加工的实用性.实验加工出最小直径为6 μm的微细轴以及最小直径为10 μm微细孔,并实现了外径为4 mm、具有24个叶片的微型涡轮盘以及直径为150 μm微小半球的加工.  相似文献   

5.
集肤效应对微细电火花加工的影响   总被引:1,自引:0,他引:1  
针对微细电火花加工中常用的高频脉冲电源,引入集肤效应的概念,并用电磁场理论对其在微细电火花加工中的存在性加以证明.对集肤效应影响下的微细电火花加工过程进行了理论分析,总结了电场强度与电流密度的非均匀分布导致电火花放电点位置的变化规律,分析并实验研究了考虑集肤效应作用的工具电极的损耗形式,认为集肤效应导致的放电能量分布差异是微细电火花加工中微细电极损耗严重的又一重要原因.  相似文献   

6.
多轴控制系统的轮廓误差具有强耦合特点,由于是多轴联动产生的结果,仅提高单轴的跟踪精度不一定能降低轮廓误差。为降低珩齿多轴控制系统的齿面轮廓误差,进一步提高珩齿的加工精度,文章提出一种简单有效的补偿控制策略。分析珩齿机的机床结构,根据珩齿多轴电子齿轮箱(electronic gearbox, EGB)控制系统的数学模型推导出基于齿轮啮合原理和坐标变换的齿面轮廓误差数学模型,并设计出一种简单的齿面轮廓误差补偿控制器。仿真和实验结果表明,所提出的补偿控制策略对降低齿面轮廓误差有显著的效果。该文方法对提高珩齿实际加工精度具有一定的指导意义。  相似文献   

7.
面向轮廓精度控制的误差补偿方法   总被引:1,自引:0,他引:1  
在分析了常用几种误差补偿方法的基础上,指出基于轮廓度误差的误差补偿方法的不足.从轮廓精度与位姿误差无关的特性出发,提出了一种直接面向轮廓精度控制的误差补偿方法--几何自适应误差补偿,论述了该方法的两个组成部分--轮廓匹配和误差预估,推导出效率很高的轮廓匹配公式.仿真结果表明:所提方法可以减小轮廓误差,提高轮廓精度,并能实现高精度轨迹控制.  相似文献   

8.
基于单个磨粒微磨削几何运动学规律和最小值函数,推导出全局磨粒的微磨削运动轨迹表达式,建立工件微磨削加工表面的包络线函数集合,得出磨削加工微观形貌仿真预测模型,并通过开展DD5镍基单晶高温合金微磨削加工工艺实验验证模型结果的正确性.实验结果表明:仿真预测微观形貌与实际微观形貌具有相似特征,仿真预测线轮廓高度与实际加工微磨削线轮廓高度误差为0.2~0.3μm;不同磨削参数下的表面粗糙度对比结果也表明预测模型与实验所得的表面粗糙度变化趋势一致.  相似文献   

9.
根据热传导基本理论和微细电火花加工的实际情况,建立起微细电火花加工的有限元分析模型;采用ANSYS分析软件,基于不同的热源模型对单脉冲放电情况的温度场进行了数值模拟,并利用仿真结果研究了单脉冲放电的表面粗糙度和材料去除率与放电能量的关系。  相似文献   

10.
针对尖刀加工的平面调制微结构表面质量差以及尖刀顶部尖角易磨损的现象,本文系统分析了尖刀在加工平面调制结构时轮廓误差的形成机理,发现了尖刀加工调制表面的轮廓误差大且存在难以补偿的特性,调制结构的轮廓误差与刀尖宽度成正比,与调制的周幅比值(λ/a)成反比.为此,本文提出了采用圆弧刀具结合刀具半径补偿方法以降低平面调制样品轮廓误差的技术方案.实验结果表明,采用圆弧刀结合刀具补偿方法对平面调制结构的轮廓精度提升具有显著作用,相比于尖刀切削,圆弧刀补偿加工的一维调制样品获得了更高的表面质量和轮廓精度.针对幅值a=4μm,周期λ=60μm的平面调制样品,采用圆弧刀补偿加工方案,调制样品的表面粗糙度Ra值由59.66 nm降至21 nm,轮廓误差精度提高了约20%.  相似文献   

11.
微细电火花加工技术因其非接触加工等显著特点,在难加工合金材料微细制造领域具有突出的优势与潜力。选择对加工性能影响较大的峰值电流、脉宽、脉间及电容4种电参数,开展了难加工合金微细通道电火花加工正交实验,并结合实验结果分析了电参数对加工时间和电极损耗的影响规律。最后,针对两个加工目标,采用多目标优化算法得到了最优电参数组合,并分别在不锈钢、殷钢、铁合金3种难加工合金材料上加工了微细通道。实验结果表明,放电参数对加工时间和加工效率具有显著影响,采用所提出的多目标优化方法可以在保证加工质量的同时有效提高加工效率。  相似文献   

12.
微细电火花加工技术因其非接触加工等显著特点,在难加工合金材料微细制造领域具有突出的优势与潜力.选择对加工性能影响较大的峰值电流、脉宽、脉间及电容4种电参数,开展了难加工合金微细通道电火花加工正交实验,并结合实验结果分析了电参数对加工时间和电极损耗的影响规律.最后,针对两个加工目标,采用多目标优化算法得到了最优电参数组合,并分别在不锈钢、殷钢、钛合金3种难加工合金材料上加工了微细通道.实验结果表明,放电参数对加工时间和加工效率具有显著影响,采用所提出的多目标优化方法可以在保证加工质量的同时有效提高加工效率.  相似文献   

13.
基于一次指数平滑模型预测的轮廓误差补偿方法   总被引:1,自引:0,他引:1  
文章针对数控机床对复杂零件高精度加工的要求,在分析系统轮廓误差的基础上,提出了一种带干扰观测器,并且将一次指数平滑模型预测法与交叉耦合控制相结合的轮廓误差实时补偿方法。前者旨在为系统每个单轴设计一个高性能的控制器,为此针对各轴提出了基于干扰观测器的PID控制策略,用于改善每个轴的特性,从而减小系统的轮廓误差;后者利用当前时刻跟踪误差的实际值,与当前时刻跟踪误差的预测值相比较,从而达到对下个时刻跟踪误差的预测,进一步减小轮廓误差。仿真分析表明所提出的控制方案有效,可提高零件的轮廓加工精度。  相似文献   

14.
胡仁平  刘刚 《科技资讯》2009,(17):80-81
本文在进行了电火花机床加工盲孔的实验的基础上,从实验结果分析了峰值电流、脉冲宽度和占空比对电极相对损耗的影响。并从实验加工后的电极形状出发,说明了在不能修正和更换电极的情况下,模具型腔加工中电极在线补偿的重要性。  相似文献   

15.
为提高3Cr13不锈钢模具型腔电火花成型精加工效率,降低加工过程中工具电极的损耗,以工具电极材料、峰值电流和脉冲宽度为影响因子,材料去除率和电极体积相对损耗为性能指标,进行2-3因素混合水平试验;应用Minitab软件建立了影响因子与性能指标的数学回归模型,分析了各因子对性能指标的影响;采用多目标优化,确定最优参数组合为:峰值电流为11.6 A,脉冲宽度为67.4μs,电极材料为Cu50W;根据优化参数组合,重复试验验证结果为:材料去除率22.378 mm~3/min,电极体积相对损耗1.075%,与优化结果基本吻合。该研究为电火花成型加工不锈钢模具型腔最优工具电极材料选择和电参数选择具有实际指导意义。  相似文献   

16.
徽细加工技术在现代制造技术中占有极其重要的地位,而微细电火花加工技术是实现微细加工的最有利手段之一.由于工具电极与工件电极之间的宏观作用力微小,因此非常适合微小零部件的加工.机床在加工过程中其工艺系统会产生各种误差,从而影响零件的加工精度.研究机床加工过程误差的产生及防止对提高机床加工精度有着重要的意义.  相似文献   

17.
数控机床进给伺服系统特性影响加工精度的分析   总被引:3,自引:1,他引:2  
讨论了系统稳态特性对轮廓误差的影响,认为在闭环控制系统中进行连续切削加工时,轮廓跟随精度与伺服驱动系统的稳态、动态特性有关.同时介绍了位置环增益与跟随误差的概念,推导了跟随误差与轮廓误差之间的数学描述,分析了在加工直线轮廓和圆弧轮廓时跟随误差与轮廓误差之间的关系,以进一步提高零件轮廓的加工精度.  相似文献   

18.
为提高凸轮磨削的加工精度, 减小凸轮的轮廓误差, 并进一步提高磨削系统的鲁棒性, 采用了新的误差补偿方法--仿形跟踪误差补偿, 将实际的仿形跟踪误差值补偿到X 轴的给定数值序列。运用Matlab 搭建了两轴联动反馈系统, 并设计模糊PID(Proportional-Integral-Derivative)控制器以实现对系统的在线补偿。采用一种形状较难加工的凸轮片作为实验对象验证补偿效果和控制器的性能。仿真实验结果表明, 该方法不仅能有效减小凸轮的轮廓误差, 简化了计算过程, 并且使系统的响应速度加快, 与传统PID 控制器相比还具有较好的鲁棒性。  相似文献   

19.
为提高凸轮磨削的加工精度和解决凸轮磨削系统的磨削精度问题, 提出了基于等效误差法和B 样条曲线的凸轮磨削平台的轮廓控制策略。运用B 样条曲线插补的方法给出两轴运动命令指令, 将凸轮的升程数据通过B 样条反算法进行处理得到生成序列的控制顶点等参数, 从而进行插补运算。根据等效轮廓误差为被控对象, 以建立凸轮磨削系统中的非线性等效误差模型, 将两轴跟踪精度问题转化为等效误差稳定化问题, 进而将计算得到控制输入值补偿到两轴, 从而对轮廓误差进行补偿。为使设计的控制器与B 样条曲线产生的指令兼容, 采用Sylvester 隐式化方法将B 样条曲线的参数形式转换为代数形式, 结合使用两种方法进行控制器设计,以满足数控凸轮磨削平台的高精度加工要求。通过在Sinulink 仿真平台实验表明, 该方法可行且有效减小了系统的轮廓误差和跟踪误差, 同时具有良好的轮廓性能。  相似文献   

20.
为了提高叶片电解加工精度,分析了过去电解加工叶片加工误差产生的原因,由此推导出机床运动、加工编程、对刀间隙产生的叶片加工误差的计算公式;利用计算机模拟技术对整体叶盘的加工过程进行数值模拟,获取叶片因电解加工过切产生的加工误差分布,其误差随着叶片的扭转角度增加而增大;在此基础上对叶片的加工工艺进行改进,提出了分步法叶片电解加工工艺,在加工中针对叶背加工误差来源采取了不同的补偿措施.试验结果表明,采用分步法加工及补偿措施对叶背加工精度进行补偿,叶背加工误差被控制在0.1mm内,叶根采取单独加工,消除了叶根过切.分步法加工工艺与误差补偿措施的运用可显著提高叶片的加工精度,满足叶片电解加工工序的精度要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号