首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
萃取催化动力学光度法测定痕量铜   总被引:1,自引:0,他引:1  
在pH=9.8的氨性缓冲溶液中,痕量Cu(Ⅱ)对H2O2氧化邻氨基酚的显色反应有催化作用,用萃取平衡控制反应时间和水相中邻氨基酸的浓度及反应程度.研究了反应的最优条件,建立了测定痕量铜的新方法。方法的线性范围为0.5—20μg·L(-1),检测限为2.2×10(-7)g·L(-1)。用本法测定了水及食品中的痕量铜,结果满意。  相似文献   

2.
萃取催化动力学光度法测定痕量铜   总被引:2,自引:0,他引:2  
铜是人体必需的微量元素,因此研究痕量铜的分析方法有一定的实际意义.结合萃取动力学分析法[1,2],本文在pH=98的氨性介质中,以邻氨基酚-氯仿溶液为萃取剂,通过固定萃取时间,控制Cu(Ⅱ)催化H2O2与邻氨基酚指示反应进行的程度,确定了最佳条件,建立了测定痕量铜的分析方法.应用本法测定了水及食品中的痕量铜,结果满意.1 实验部分11 仪器和试剂GBCUV(VIS)916型紫外-可见分光光度计;VIS-723型分光光度计;pHs-3型酸度计.Cu(Ⅱ)标准溶液:用CuSO4·5H2O配成1…  相似文献   

3.
本文研究了在pH5.5的缓冲溶液中,α,α’─联吡啶活化铜(Ⅱ)催化过氧化氢氧化二苯碳酰二肼的指示反应,用萃取平衡控制反应时间和水相中二苯碳酸二肼的浓度及反应程度,建立了萃取催化动力学测定铜的新光度法.方法的检出限为3.O×10-10g/ml,线性范围为0—1.0μg/10mL,用于水样和岩石中铜的测定,结果满意.  相似文献   

4.
研究了在Na2HPO4-NaOH缓冲溶液中痕量锰催化高碘酸氧化镁试剂Ⅱ〔即4-(4-硝基苯偶氮)-1-萘酚〕使之褪色,并研究了催化动力学条件。建立了一种高灵敏、高选择性测定痕量锰的方法。其测定范围为0.01~2.5μg/25mL,检测限为2.68×10-11g/mL。  相似文献   

5.
催化光度法测定环境水样中的铬(Ⅵ)   总被引:1,自引:0,他引:1  
研究了Cr(Ⅵ)离子对H2O2氧化孔雀石绿退色反应的催化效应及其动力学条件,从而建立了痕量铬(Ⅵ)的催化光度法.本法的测定范围为1.0~5.0μg/25mL,检出限为2.56×10-8g/mL,用该法测定环境水样中的Cr(Ⅵ),取得满意的结果.  相似文献   

6.
研究了Rh(Ⅲ)催化KClO3-KI的反应与I2-Luminol的化学发光反应相偶合,建立了测定痕量铑的化学发光新方法.对测定条件进行了优化,此方法具有较高的灵敏度,检测限达到3.8×10-6μg/mLRh;线性浓度范围宽,为1×10-5~1μg/mLRh.采用三正辛胺(TOA)萃取色谱柱将铑(Ⅲ)分离出来,方法已用于测定贵金属离子混合液中的铑  相似文献   

7.
pH=2.0的H2SO4介质中,钴(Ⅱ)对KIO4和H2O2氧化中性红(NR)的褪色反应有明显的催化作用,据此建立了测定痕量钴(Ⅱ)的催化动力学光度法,可测定2×10-8~4×10-7g/ml的钴(Ⅱ),检出限为5×10-9g/ml。用于维生素B12中钴的测定,获得满意的分析结果。  相似文献   

8.
在pH54~75范围内,镍与2(2噻吩偶氮)5二乙氨基酚(TADAP)形成最大吸收波长位于563nm的红色配合物,显色反应具有很高的灵敏度,摩尔吸光系数为156×105L·mol-1·cm-1,并且色泽稳定,在0~15μg/25mL范围内符合比耳定律.该方法可用于铝合金中镍的测定.  相似文献   

9.
用AOT/异辛烷反胶团系统萃取了添加不同浓度镁离子的猪心提取液中的细胞包素C.其结果为:添加0.025mol/LMg2+的萃取率E.R,(ExtractRatio)为96.5%(氧化型和还原型平均值).添加0.3mol/LMg2+的萃取率为28.3%。萃取后水相的吸收光谱中,还原型细胞色素C在520nm、550nm的吸收峰值消失。120nm的吸收峰值显著降低。萃取有机相的吸收光谱中,还原型细胞包素C在420nm、520nm和550nm处的特征吸收峰值显著。经反萃取后水相的吸收光谱与提取液以及萃取有机相的吸收光谱相同。说明添WMg2+后,经AOT/异辛烷萃取和反萃取过程能将细胞包素C从猪心提取液中萃取分离出来。  相似文献   

10.
痕量铁的在线监测研究   总被引:2,自引:0,他引:2  
根据在邻菲罗啉的活化下Fe3+对KIO4氧化罗丹明B褪色的催化作用,利用流动注射技术,建立了一个痕量铁的在线监测的新方法.该方法Fe3+的浓度在0~8×10-5g/L和8×10-5~2.8×10-4g/L范围内分段与褪色效应呈良好线性相关,检出限为:1×10-7g/LFe3+(3δ);RSD≤1.6%(c=5×10-5g/L,n=11).利用该方法对水样中铁进行在线监测,效果满意  相似文献   

11.
The discovery of the prolific Ordovician Red River reservoirs in 1995 in southeastern Saskatchewan was the catalyst for extensive exploration activity which resulted in the discovery of more than 15 new Red River pools. The best yields of Red River production to date have been from dolomite reservoirs. Understanding the processes of dolomitization is, therefore, crucial for the prediction of the connectivity, spatial distribution and heterogeneity of dolomite reservoirs.The Red River reservoirs in the Midale area consist of 3~4 thin dolomitized zones, with a total thickness of about 20 m, which occur at the top of the Yeoman Formation. Two types of replacement dolomite were recognized in the Red River reservoir: dolomitized burrow infills and dolomitized host matrix. The spatial distribution of dolomite suggests that burrowing organisms played an important role in facilitating the fluid flow in the backfilled sediments. This resulted in penecontemporaneous dolomitization of burrow infills by normal seawater. The dolomite in the host matrix is interpreted as having occurred at shallow burial by evaporitic seawater during precipitation of Lake Almar anhydrite that immediately overlies the Yeoman Formation. However, the low δ18O values of dolomited burrow infills (-5.9‰~ -7.8‰, PDB) and matrix dolomites (-6.6‰~ -8.1‰, avg. -7.4‰ PDB) compared to the estimated values for the late Ordovician marine dolomite could be attributed to modification and alteration of dolomite at higher temperatures during deeper burial, which could also be responsible for its 87Sr/86Sr ratios (0.7084~0.7088) that are higher than suggested for the late Ordovician seawaters (0.7078~0.7080). The trace amounts of saddle dolomite cement in the Red River carbonates are probably related to "cannibalization" of earlier replacement dolomite during the chemical compaction.  相似文献   

12.
There are numerous geometric objects stored in the spatial databases. An importance function in a spatial database is that users can browse the geometric objects as a map efficiently. Thus the spatial database should display the geometric objects users concern about swiftly onto the display window. This process includes two operations:retrieve data from database and then draw them onto screen. Accordingly, to improve the efficiency, we should try to reduce time of both retrieving object and displaying them. The former can be achieved with the aid of spatial index such as R-tree, the latter require to simplify the objects. Simplification means that objects are shown with sufficient but not with unnecessary detail which depend on the scale of browse. So the major problem is how to retrieve data at different detail level efficiently. This paper introduces the implementation of a multi-scale index in the spatial database SISP (Spatial Information Shared Platform) which is generalized from R-tree. The difference between the generalization and the R-tree lies on two facets: One is that every node and geometric object in the generalization is assigned with a importance value which denote the importance of them, and every vertex in the objects are assigned with a importance value,too. The importance value can be use to decide which data should be retrieve from disk in a query. The other difference is that geometric objects in the generalization are divided into one or more sub-blocks, and vertexes are total ordered by their importance value. With the help of the generalized R-tree, one can easily retrieve data at different detail levels.Some experiments are performed on real-life data to evaluate the performance of solutions that separately use normal spatial index and multi-scale spatial index. The results show that the solution using multi-scale index in SISP is satisfying.  相似文献   

13.
AcomputergeneratorforrandomlylayeredstructuresYUJia shun1,2,HEZhen hua2(1.TheInstituteofGeologicalandNuclearSciences,NewZealand;2.StateKeyLaboratoryofOilandGasReservoirGeologyandExploitation,ChengduUniversityofTechnology,China)Abstract:Analgorithmisintrod…  相似文献   

14.
本文叙述了对海南岛及其毗邻大陆边缘白垩纪到第四纪地层岩石进行古地磁研究的全部工作过程。通过分析岩石中剩余磁矢量的磁偏角及磁倾角的变化,提出海南岛白垩纪以来经历的构造演化模式如下:早期伴随顺时针旋转而向南迁移,后期伴随逆时针转动并向北运移。联系该地区及邻区的地质、地球物理资料,对海南岛上述的构造地体运动提出以下认识:北部湾内早期有一拉张作用,主要是该作用使湾内地壳显著伸长减薄,形成北部湾盆地。从而导致了海南岛的早期构造运动,而海南岛后期的构造运动则主要是受南海海底扩张的影响。海南地体运动规律的阐明对于了解北部湾油气盆地的形成演化有重要的理论和实际意义。  相似文献   

15.
Various applications relevant to the exciton dynamics,such as the organic solar cell,the large-area organic light-emitting diodes and the thermoelectricity,are operating under temperature gradient.The potential abnormal behavior of the exicton dynamics driven by the temperature difference may affect the efficiency and performance of the corresponding devices.In the above situations,the exciton dynamics under temperature difference is mixed with  相似文献   

16.
The elongation method,originally proposed by Imamura was further developed for many years in our group.As a method towards O(N)with high efficiency and high accuracy for any dimensional systems.This treatment designed for one-dimensional(ID)polymers is now available for three-dimensional(3D)systems,but geometry optimization is now possible only for 1D-systems.As an approach toward post-Hartree-Fock,it was also extended to  相似文献   

17.
18.
The explosive growth of the Internet and database applications has driven database to be more scalable and available, and able to support on-line scaling without interrupting service. To support more client's queries without downtime and degrading the response time, more nodes have to be scaled up while the database is running. This paper presents the overview of scalable and available database that satisfies the above characteristics. And we propose a novel on-line scaling method. Our method improves the existing on-line scaling method for fast response time and higher throughputs. Our proposed method reduces unnecessary network use, i.e. , we decrease the number of data copy by reusing the backup data. Also, our on-line scaling operation can be processed parallel by selecting adequate nodes as new node. Our performance study shows that our method results in significant reduction in data copy time.  相似文献   

19.
R-Tree is a good structure for spatial searching. But in this indexing structure,either the sequence of nodes in the same level or sequence of traveling these nodes when queries are made is random. Since the possibility that the object appears in different MBR which have the same parents node is different, if we make the subnode who has the most possibility be traveled first, the time cost will be decreased in most of the cases. In some case, the possibility of a point belong to a rectangle will shows direct proportion with the size of the rectangle. But this conclusion is based on an assumption that the objects are symmetrically distributing in the area and this assumption is not always coming into existence. Now we found a more direct parameter to scale the possibility and made a little change on the structure of R-tree, to increase the possibility of founding the satisfying answer in the front sub trees. We names this structure probability based arranged R-tree (PBAR-tree).  相似文献   

20.
The geographic information service is enabled by the advancements in general Web service technology and the focused efforts of the OGC in defining XML-based Web GIS service. Based on these models, this paper addresses the issue of services chaining,the process of combining or pipelining results from several interoperable GIS Web Services to create a customized solution. This paper presents a mediated chaining architecture in which a specific service takes responsibility for performing the process that describes a service chain. We designed the Spatial Information Process Language (SIPL) for dynamic modeling and describing the service chain, also a prototype of the Spatial Information Process Execution Engine (SIPEE) is implemented for executing processes written in SIPL. Discussion of measures to improve the functionality and performance of such system will be included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号