首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under the conventional solidification condition, a liquid aluminium alloy can be hardly undercooled because of oxidation. In this work, rapid solidification of an undercooled liquid Al80.4Cu13.6Si6 ternary eutectic alloy was realized by the glass fluxing method combined with recycled superheating. The relationship between superheating and undercooling was investigated at a certain cooling rate of the alloy melt. The maximum undercooling is 147 K (0.18T E). The undercooled ternary eutectic is composed of α(Al) solid solution, (Si) semiconductor and θ(CuAl2) intermetallic compound. In the (Al+Si+θ) ternary eutectic, (Si) faceted phase grows independently, while (Al) and θ non-faceted phases grow cooperatively in the lamellar mode. When undercooling is small, only (Al) solid solution forms as the leading phase. Once undercooling exceeds 73 K, (Si) phase nucleates firstly and grows as the primary phase. The alloy microstructure consists of primary (Al) dendrite, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic at small undercooling, while at large undercooling primary (Si) block, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic coexist. As undercooling increases, the volume fraction of primary (Al) dendrite decreases and that of primary (Si) block increases. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101, 50395105) and the Doctorate Foundation of Northwestern Polytechnical University (Grant No. CX200419)  相似文献   

2.
The dynamic solidification of Sn-38.1% Pb eutectic alloy within an ultrasonic field is investigated at a frequency of 35 kHz.As the sample height H is reduced,the effect of ultrasound on macrosegregation becomes more prominent,and the volume fraction of spherical eutectic cells increases correspondingly.When H equals the wavelength λ in liquid alloy,the introduction of ultrasound enlarges the distribution region of the primary (Sn) phase,but reduces the domains of the Sn-Pb eutectic and primary (Pb) phases.Meanwhile,a "dendritic-equiaxed" structural transition occurs in the primary (Sn) phase,and its grain size is significantly reduced within the ultrasonic field.Once H decreases to λ/2 and λ/4,the ultrasonic field promotes crystal nucleation and suppresses further undercooling of the bulk liquid alloy.Theoretical analyses indicate that the local high pressure induced by the cavitation effect and the stirring effect due to acoustic streaming are the main factors dominating the eutectic growth mechanism during dynamic solidification.  相似文献   

3.
The rapid solidification behavior of Co-Sn alloys was investigated by melt spinning method.The growth morphology of αCo phase in Co-20% Sn hypoeutectic alloy changes senistively with cooling rate.A layer of columnar αCo dendrite forms near the roller side at low colling rates.This region becomes small and disappears as the cooling rate increases and a kind of very fine homogeneous microstructure characterized by the distribution of equiaxed αCo dendrites in γCo3Sn matrix is subsequently produced.For Co-34.2% Sn eutectic alloy,anomalous eutectic forms within the whole range of cooling rates.The increase of cooling rate has two obvious effects on both alloys:one is the microstructure refinement,and the other is that it produces more crystal defects to intensify the seattering of free electrons,leading to a remarkable increase of electrical resistivity,Under the condition that the grain boundary reflection coefficient γ approaches 1,the resistivity of rapidly solidified Co-Sn alloys can be predicted theoretically.  相似文献   

4.
The solidification of Pb-16%Sb hypereutectic alloy is investigated within ultrasonic field with a fre-quency of 15 kHz. It is found that the ultrasonic field promotes crystal nucleation and terminates the further bulk undercooling of the alloy melt. Theoretical analysis shows that the cavitation effect and the forced bulk vibration are the main factors that reduce the undercooling level. With the increase of ul-trasound intensity, the primary (Sb) phase experiences a growth mode transition from faceted to non-faceted branched growth, and the macrosegregation of primary (Sb) phase is gradually sup-pressed. In addition, the microstructures of Pb-Sb eutectic exhibit a conspicuous coarsening with in-creasing ultrasound intensity, and a structural transition of “lamellar eutectic—anomalous eutectic” occurs when ultrasound intensity rises up to 1.6 W/cm2. The ultrasonic field also changes the solute distribution adjacent to the solidification front, which lowers the Pb contents in primary (Sb) phase.  相似文献   

5.
The solidification characteristics and microstructure evolution in grey cast iron were investigated through Jmat-Pro simulations and quenching performed during directional solidification. The phase transition sequence of grey cast iron was determined as L → L + γ → L +γ + G → γ + G → P (α + Fe3C) + α + G. The graphite can be formed in three ways:directly nucleated from liquid through the eutectic reaction (L → γ + G), independently precipitated from the oversaturated γ phase (γ → γ + G), and produced via the eutectoid transformation (γ → G + α). The area fraction and length of graphite as well as the primary dendrite spacing decrease with increasing cooling rate. Type-A graphite is formed at a low cooling rate, whereas a high cooling rate results in the precipitation of type-D graphite. After analyzing the graphite precipitation in the as-cast and transition regions separately solidified with and without inoculation, we concluded that, induced by the inoculant addition, the location of graphite precipitation changes from mainly the γ interdendritic region to the entire γ matrix. It suggests that inoculation mainly acts on graphite precipitation in the γ matrix, not in the liquid or at the solid-liquid front.  相似文献   

6.
With scanning electron microscope (SEM), the surface morphology of phase boundary sliding (PBS) in superplastic deformation (SPD) of Zn-Al alloy and the diffusion behavior of Zn, Al interfaces in their powers' sintering have been investigated. The results show that Zn-Al eutectoid microstructure can be achieved through their powders' sintering, and the diffusion characteristic between Zn and Al is just a demonstration of Kirkendall effect, in which Zn can dissolve into Al whereas A1 can hardly dissolve into Zn. During sintering, a diffusion-solution zone ?′ has formed and subsequently transformed into a eutectoid microstructure in the cooling process. The superplastic deformation mechanism of Zn-Al eutectic alloy is phase boundary sliding which is controlled by the diffusion-solution zone ?′. If the diffusion-solution zone ?′ is unsaturated, it will have much more crystal defects and the combination between ?′ and phase ? is weak, thus the process of phase boundary sliding becomes easily; on the contrary, if the diffusion-solution zone ?′ becomes thick and saturated, the sliding will be difficult.  相似文献   

7.
Peritectic solidification under high undercooling conditions   总被引:3,自引:1,他引:2  
The solidification characteristics of highly undercooled Cu-7.77%Co peritectic alloy has been examined by glass fluxing technique. The obtained undercoolings vary from 93 to 203 K(0.14 TL). It is found that the α(Co) phase always nucleates and grows preferentially, which is followed by peritectic transformation. This means that the peritectic phase cannot form directly, even though the alloy melt is undercooled to a temperature far below its peritectic point. The maximum recalescence temperature measured experimentally decreases as undercooling increases , which is lower than the thermodynamic calculation result owing to the actual non-adia-batic nature of recalescence process. The dendritic fragmentation of primary α(Co) phase induced by high undercooling is found to enhance the completion of peritectic transformation. In addition, the LKT/BCT dendrite growth model is modified in order to make it applicable to those binary alloy systems with seriously curved liquidus and solidus lines. The dendrite growth velocities of primary α(Co) phase are subsequently calculated as a function of undercooling on the basis of this model.  相似文献   

8.
强制对流对 AlSi7.0 合金定向凝固界面溶质分布的影响   总被引:2,自引:0,他引:2  
研究了定向凝固条件下强制性对流对AlSi7.0合金凝固界面溶质原子分布的影响。强制性对流是利用金属熔体流过凝固界面上方的内部坩埚底部中心的开孔形成的。试验结果表明,随着冷却速度的提高,试样中共晶体的体积分数减小,而共晶体中硅的体积分数却有所增加。强制性对流条件下,合金的共晶体体积分数以及共晶体中的Si粒子的体积分数都较只有自然对流时高。  相似文献   

9.
洪流  杨闯  刘静 《贵州科学》2012,30(3):84-86
目前人们对包晶凝固过程和机理的研究远没有单相和共晶体系那样深入,长期以来仅限于定性的描述,至今还没有形成较为完整的理论体系,也没有单相和共晶合金那样较成熟的凝固模型。本文评述了其近年来包晶凝固的理论、各种假设模型,讨论了定向凝固过程中组织,生长机制等。  相似文献   

10.
Al-Si合金快速等轴凝固界面响应函数及组织选择   总被引:1,自引:0,他引:1  
在快速枝晶及共晶生长理论模型基础上,使用最高界面生长温度判据,建立了共晶合金快速等轴凝固界面响应函数(IRF)模型,分析了Al-Si合金系各种相及组织的竞争生长,绘制了非平衡组织选择图.计算结果与实验结果基本吻合,说明所建立的界面响应函数模型可以较好地预测Al-Si合金等轴凝固过程中的非平衡组织选择及形态演化.  相似文献   

11.
Taking Fe-0.15wt%C-0.8wt%Mn steel as the research object, in situ observations of the δ phase growth process during solidification were conducted by using a high-temperature confocal scanning laser microscope (HTCSLM). The effects of the solid/liquid (S/L) interface's shape, temperature, and curvature radius on the lateral growth rate of δ phase were investigated in detail, and the relational expression among the lateral growth rate of δ phase, temperature, and curvature radius of column-shaped δ phase was deduced for the carbon steel during solidification. The results indicate the growth rate of the concave-shaped S/L interface is larger than that of the convex-shaped S/L interface during the beginning growth of δ phase, but these two kinds of growth rates gradually approach with proceeding in solidification. The calculated lateral growth rate of δ phase is consistent with the experimental result at a cooling rate of 0.045℃/s.  相似文献   

12.
Rapid eutectic growth during free fall   总被引:3,自引:0,他引:3  
Rapid eutectic growth of Sb-24%Cu alloy is realized in the drop tube during the free fall under the containerless condition. Based on the analysis of crystal nucleation and eutectic growth in the free fall condition, it is indicated that, with the increase of undercooling, microstructural transition of Sb-24%Cu eutectic alloy proceeds from lamellar to anomalous eutectic structure. Undercoolings of 0 –154 K have been obtained in experiment. The maximum undercooling exceeds to 0.19Te. Calculated results exhibit that Cu2Sb compound is the primary nucleation phase, and that the primary Sb dendrite will grow more rapidly than the eutectic structure when undercooling is larger than 40 K. The eutectic coupled zone around Sb-24%Cu eutectic alloy leads strongly to the Cu-rich side and covers a composition range from 23.0% to 32.7%Sb.  相似文献   

13.
14.
稀土元素对含铬白口铸铁中共晶碳化物生长的影响   总被引:2,自引:0,他引:2  
文中研制了一套高温度梯度的区域熔化定向凝固装置,能在工业用共晶成份的含铬白口铸铁试样中,得到平整的液—固界面;并由于在液态保持的时间较短,故可保留稀土变质处理的效果.使用这种装置研究了低铬(4%Cr)白口铸铁和高铬(20%Cr)白口铸铁中共晶碳化物的生长,以及稀土元素的存在对其造成的影响.在低铬白口铸铁中,随着稀土元素的加入,使共晶凝固时的领先相由基本上是碳化物变为基本上是奥氏体,并由于生长过程中,奥氏体在碳化物前端相互搭桥,使许多板状碳化物转变成板条状和杆状,稀土元素含量愈高,转变的份额愈多;高铬铸铁的共晶凝固与低铬铸铁不同,即使在不含稀土元素的情况下,亦主要是奥氏体为领先相,加入稀土元素对共晶生长时的领先相及碳化物的形貌没有明显的影响.  相似文献   

15.
The rapid solidification of undercooled liquid Ni_(45)Fe_(40)Ti_(15)alloy was realized by glass fluxing technique.The microstructure of this alloy consists of primaryγ-(Fe,Ni)phase and a small amount of interdendritic pseudobinary eutectic.The primaryγ-(Fe,Ni)phase transferred from coarse dendrite to fragmented dendrite and the lamellar eutectic became fractured with the increase of undercooling.The growth velocity ofγ-(Fe,Ni)dendrite increased following a power relation with the rise of undercooling.The addition of solute Ti suppressed the rapid growth ofγ-(Fe,Ni)dendrite,as compared with the calculation results of Fe-Ni alloy based on LKT model.The microhardness values of the alloy and the primaryγ-(Fe,Ni)phase increased by 1.5 times owing to the microstructural refinement caused by the rapid dendrite growth.The difference was enlarged as undercooling increases,resulting from the enhanced hardening effects on the alloy from the increased grain boundaries and the second phase.  相似文献   

16.
Mg对Zn--11%Al合金镀层凝固组织及合金层生长的影响   总被引:1,自引:0,他引:1  
将工业纯铁分别在510℃的Zn-11%Al、Zn-11%Al-1.5%Mg、Zn-11%Al-3%Mg和Zn-11%Al-4.5%Mg合金熔池中进行不同时间的热浸镀,使用X射线衍射仪、扫描电子显微镜、能谱仪等仪器设备,研究Mg含量对Zn-11%Al合金镀层凝固组织和镀层中Fe-Al合金层生长的影响.结果表明:Zn-11%Al合金镀层凝固组织由富Al相和Zn/Al二元共晶组成;随着Zn-11%Al-x%Mg合金中Mg含量的增加,合金镀层的凝固组织中逐渐出现Zn/Al/MgZn2三元共晶、块状 MgZn2相和Al/MgZn2二元共晶.四种合金镀层中合金层主要由Fe2 Al5 Znx和FeAl3 Znx相组成,合金层的厚度随浸镀时间的增加而增加,Mg含量的增加使Fe-Al合金层生长速率指数和生长速率降低.在Zn-11%Al合金镀层中Fe-Al合金层形成的初期,可形成致密稳定的Fe-Al化合物层;热浸镀120 s后,扩散通道的移动使Fe-Al化合物层失稳破裂. Zn-11%Al-x%Mg合金中Mg元素可明显推迟液Zn进入镀层中Fe-Al合金层的时间,使Fe-Al合金层更加稳定和致密.  相似文献   

17.
The ZrTiCuNiBe alloy is melt and solidified by Bridgman unidirectional solidification on two gravity field orientations (the gravity field orientation is parallel and opposite to solidification direction). Effects of gravity on morphology and microstructure are investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). When gravity field orientation is parallel to solidification direction, less needle-like primary phase is embedded in a matrix eutectic; when gravity field orientation is opposite to solidification direction, a large amount of coarser needle-like primary phases were observed.  相似文献   

18.
对重力作用下Al-Si/SiC颗粒系统二维凝固过程的数值模拟   总被引:2,自引:0,他引:2  
论文采用多相流模型对重力作用下Al Si 7% (质量分数 ) /SiC颗粒功能梯度材料二维凝固过程进行了数值模拟 .计算了在不含颗粒、含有小尺寸颗粒和含有大尺寸颗粒几种不同条件下颗粒和液相的运动 ,产生的宏观偏析 ,共晶合金在晶体中所占比例 ,以及最终的颗粒分布 .结果表明 ,颗粒和糊状区的存在会使液态金属的流动阻力增大 ,流速降低 ,产生的宏观偏析减弱 .在含有小尺寸颗粒的情况下 ,液相和颗粒运动速度很小 ,大部分区域保持初始颗粒体积分数不变 .在含有大尺寸颗粒的情况下 ,颗粒沉降速度很快 ,在底部形成颗粒堆积区 ,在上部形成颗粒体积分数为零区 .  相似文献   

19.
Solidification of Fe-7.5%Mo-16.5%Si ternary quasiperitectic alloy is investigated by using differential scanning calorimetry (DSC) and drop tube containerless processing techniques.The primary phase is identified as R (Fe5Mo3Si2) and the quasiperitectic phases are τ1 (Fe5MoSi4) and Fe3Si.With the decrease of droplet diameter, the cooling rate and undercooling of the droplets in-crease rapidly.The experiment result indicates that the solidification microstructure is composed of remnant primary phase, qua-sip...  相似文献   

20.
The time-temperature-transformation (TTT) curve of the 00Cr25Ni7Mo4N duplex stainless steel was obtained with a Formastor-digital thermal dilatometer, and the influence of isothermal aging on σ precipitation was studied by metallographic observation, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results show that the decomposition of ferrite phase is accompanied by the formation of σ phase at 750–1000℃, especially in the range of 800–900℃. The longer the aging time, the higher the amount of σ precipitation. The area fraction of various phases remains at a certain value upon the completion of ferrite deformation. The temperature of 850℃ is the most sensitive transaction temperature, the incubation time for the formation of σ precipitation is less than 1 min, and aging for 20 min leads to the complete transformation of ferrite. The σ phase is formed preferentially at the α/α/γ junction, and then grows along the α/α boundary in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号