首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
100Ah动力电池采用尖晶石锰酸锂作为正极材料,400Ah电池组应用于纯电动车,实验表明电池具有良好的电化学性能和安全性能。  相似文献   

2.
采用高温固相法烧结制备得到正极材料Li Ni0.5Co0.2Mn0.3O2,通过X射线衍射(XRD)、扫描电镜(SEM)以及循环伏安(CV)、交流阻抗(EIS)等电化学性能测试手段,探讨高温烧结工艺中不同锂源对材料结构、形貌及电化学性能的影响,结果表明,采用Li OH作为锂源合成的材料与采用其他锂源相比,具有较好的层状结构和电化学性能.该材料在0.1C倍率下的首次充放电容量和库伦效率较高(172.7 m Ah/g,89.08%),在0.5C、1C倍率下循环50次后,材料的放电容量仍保持在144.5 m Ah/g和136.2 m Ah/g.  相似文献   

3.
以Ni SO4·6H2O、Co SO4·7H2O和Al2(SO4)3·18H2O为原料,氨水为络合剂,在碱性条件下通过液相共沉淀法制备了前驱体Ni0.8Co0.15Al0.05(OH)2。将前驱体与Li OH·H2O混合均匀后在氧气氛围下煅烧得到锂离子正极材料Li Ni0.8Co0.15Al0.05O2;通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和电化学性能测试仪对样品性能进行了表征。研究结果表明,在2.8~4.3V电压范围内,在0.1C、0.2C和1C的充放电倍率下,首次放电比容量分别为186.6m Ah·g-1、184.8m Ah·g-1和176.7m Ah·g-1;在0.2C倍率下循环10次后,放电比容量为177.6m Ah·g-1,容量保持率为96.1%;在1C倍率下循环40次后,放电比容量为150.1m Ah·g-1,容量保持率为85.0%。  相似文献   

4.
采用水热合成法制备了Fe_3O_4微球,并基于静电引力自组装机制,合成了石墨烯-Fe_3O_4微球复合材料(GEFe_3O_4).Fe_3O_4微球在石墨烯表面均匀分布,且实现了石墨烯对Fe_3O_4微球的部分包覆.电化学测试结果表明,在92.6m A/g电流密度下,Fe_3O_4微球的首次放电容量为938.3 m Ah/g,经30次循环,其放电容量衰减为192.5 m Ah/g;GE-Fe_3O_4的首次放电容量为840 m Ah/g,第30次循环的放电容量达803.5 m Ah/g;电流密度升至463 m A/g,经50次循环,GE-Fe_3O_4的放电容量仍有306.6 m Ah/g.与单纯Fe_3O_4微球相比,GE-Fe_3O_4复合材料的锂离子电池负极性能获得显著改善.  相似文献   

5.
利用Fe_2P_2O_7和碳酸锂为原材料,并通过不同的碳包覆合成LiFePO_4/C复合材料.利用XRD、SEM、碳硫分析仪、恒流充放电法和循环伏安对产物的组成、结构、形貌和电化学性能进行测试,确定含碳量为2.45wt%的LiFePO_4/C复合材料具有更好的电化学性能.实验结果表明,在0.1C倍率下,锂离子电池的放电比容量为130.49 m Ah/g,在1C倍率下,锂离子电池的放电比容量为108.58 m Ah/g.  相似文献   

6.
以Ge O2和氧化石墨烯(GO)为前驱体,用水热法制备纳米Ge/石墨烯(Ge/GNs)复合材料.扫描电镜(SEM)和透射电镜(TEM)得到在复合材料中,石墨烯包覆着锗纳米粒子,这与纯相Ge材料相比,会缓解锂嵌入Ge内部产生的体积膨胀.并且得到纳米Ge粒子粒径约为40 nm左右.第一次充放电容量分别是1385 m Ah·g-1和1982m Ah·g-1,库伦效率为70%.50圈充放电循环之后,容量保持在954 m Ah·g-1,容量的保持率为69%,纳米Ge/GNs复合材料高倍率循环后,在初始(0.1 C)电流密度下仍能保持1102 m Ah·g-1的容量.而在2 C倍率大电流下,容量略有衰减,保持911 m Ah·g-1的容量.纳米Ge/GNs复合材料在高电流密度下充放电性能显示出较高的稳定性.实验证明,由于加入石墨烯,复合材料的导电性和循环稳定性得到增强,库伦效率也随之提高.  相似文献   

7.
研制成功了电动自行车用5.5Ah圆柱型铝塑膜锰酸锂电池,它具有良好的倍率、循环、高低温特性。单体电池通过了GB/T 18287—2000的安全试验,所有试验中电池不起火、不爆炸。将单体电池放电到3.0V,然后搁置3个月,电池出现“气胀”,经过循环,“气胀”消失,电池性能没有发生明显的变化。10.8V/5Ah电池组1C,100%DOD循环500次,容量保持在82%。  相似文献   

8.
采用溶剂挥发法,以丙酮和DMF做混合溶剂制备PVDF-HFP/PMMA聚合物电解质,通过X射线衍射、热失重分析、交流阻抗、恒流充放电循环及倍率充放电等测试手段,考察了PMMA的添加量对聚合物电解质性能的影响.研究发现当PMMA的添加量为50%时,聚合物电解质表现出最佳性能,室温离子电导率从0.26 m S/cm提升到1.35 m S/cm,以Li Co O2作正极材料,锂片作负极材料组装的聚合物锂离子电池初始容量从80.1 m Ah/g提升到143.6 m Ah/g,在0.2 C倍率条件下,50个循环后容量保持率还能达到80%,表现出优异的锂离子电池性能.  相似文献   

9.
采用高导电性碳材料和商业活性炭分别作为硫的载体,与单质硫混合后进行热处理制得SP/S和CAC/S硫碳复合材料,利用热重测试、循环伏安、交流阻抗和恒流充放电测试等分析方法,研究了正极中电极材料厚度、硫碳复合比例对电池电化学性能的影响.结果表明:适当增加电极材料厚度可以有效地改善Super-P材料电极综合电化学性能;通过改变硫碳复合比例,提高硫含量则对活性炭材料锂硫电池电极的性能提升有着显著的效果.其中,含硫量为63.60%的CAC/S正极材料首次放电比容量达到908.8 m Ah/g,活性物质利用率为54.2%,100圈循环后放电容量为594.1 m Ah/g,容量保持率达到65.4%.  相似文献   

10.
以方型铝壳13Ah LiFePO_4锂离子电池作为研究对象,对比考察两类不同的成膜添加剂碳酸亚乙烯酯(VC)和亚硫酸丙烯酯(PS)对电池性能的影响.通过对分容后电池的内阻和容量、倍率性能、脉冲性能(HPPC)、常温循环性能和高温循环性能的数据分析,得出了在电解液中添加3%VC时,电池具有较低内阻,较高容量,较好的倍率、HPPC性能、常温循环和高温循环性能.  相似文献   

11.
采用尖晶石锰酸锂和以锰为主的多元金属氧化物正极材料分别研制了Mn 系正极高功率和高容量动力锂离子二次电池, 研究并比较了Mn 系动力电池与海内外几家公司制造的LiFePO4动力电池的电化学性能。结果表明Mn 系高容量和高功率动力电池不仅具有高能量密度、优越 的高低温与倍率充放 电特性、热稳定性良好, 同时电池的 SOC-OCV 线性关系还有利于管理系统的控制, 因此该类动力电池会成为今后动力电池的一个重要发展方向。  相似文献   

12.
从负极材料、电解质溶液、电压范围3方面研究了适合于锰酸锂动力电池的最佳体系,结果表明:成本低廉的天然石墨非常适合作为锰酸锂动力电池的负极材料,使用改良电解质溶液后电池的循环寿命可延长200次,锰酸锂电池在3.0~4.2V之间稳定性最好,使用寿命最长,体系确定后的锰酸锂动力电池安全性能、循环寿命、高温性能、低温性能良好。  相似文献   

13.
采用尖晶石LiMn2O4材料制作了18650型锂离子电池, 分析了影响锂离子电池大电流放电性能的主要因素如极耳、极片、电解质溶液等。又采用新型正极材料LiMnxNiyCozO2开发出性能更优越的18650型高功率锂离子电池, 该电池可10C连续放电和8C快速充电, 并具有优秀的循环性能和搁置性能。18650型高功率锂离子电池的开发, 为研制混合电动车(HEV)用高功率锂离子电池提供了实验依据。  相似文献   

14.
以100Ah的锰酸锂锂离子二次电池锂离子电池组和30kW交流电机组成了动力系统,研制了MGL6486EV电动汽车。电池组的电压为304V,能量为37kWh,电池组采用了智能管理系统(BMS)和均衡系统。电动机采用全数字适量控制,并具有刹车能量回收和防溜车功能。在充电时智能充电机始终与BMS保持通信联系,以保证电池组安全快速充电。车辆最高车速可达117km/h,0~50km/h加速时间为6.80s,50~80km/h加速时间为7.34s,爬坡度超过20%,续驶里程为204km,百公里耗电仅为19kWh。到目前为止该车辆已运行5万多km。  相似文献   

15.
介绍了锰酸锂废旧锂离子电池经放电处理后, 再对其进行拆解→活性物质剥离→酸溶→沉淀回收Mn、Li等工艺处理, 有效地回收了其中的锰和锂。实验结果表明:用2mol·L-1的HNO3+1mol·L-1的H2O2体系,在固液比为65g·L-1的情况下对经过600℃处理的锰酸锂进行酸溶效果最佳,LiMn2O4的溶解率为100%,锰的回收率达98%,所得Li2CO3沉淀纯度可达97%以上。  相似文献   

16.
 从锂离子电池材料技术、单体电池、电池系统等几个方面对锂离子动力电池的发展进行了评述。锰酸锂一般应用于轻型电动车辆,也可与三元材料混合提升新能源车辆用电池的安全性和倍率性能;磷酸铁锂适用于中等比能量要求的动力电池;三元材料通过材料、隔膜涂层和电池技术的改进提升安全性后适用于高比能量型电池;石墨负极目前仍然是广泛应用的负极材料,在碳负极材料中添加硅等高容量材料的努力仍在进行中,液体电解液在向高电压和宽工作温区方向发展;小圆柱电池、方形金属壳电池和软包电池各有特点,适应了多元化的电动汽车应用需求,国产制造设备技术水平持续提升,电池系统技术方面需要整车和电池方面合作努力以提升安全性和可靠性。锂离子动力电池是目前最具实用价值的动力电池,预期其比能量在不久的将来可提升至300 (W·h)/kg,满足新能源汽车产业未来10年的发展需求。  相似文献   

17.
尖晶石钛酸锂(Li4Ti5O12)作为锂离子电池负极材料具有长寿命、高稳定性的特点,是高功率锂离子电池的理想选择,对发展电动汽车以及智能电网有重要意义.结合球差校正透射电镜(STEM)、电子能量损失谱(EELS)和理论计算,在原子尺度观测到了尖晶石钛酸锂(Li4Ti5O12)的结构,实现了对脱嵌锂过程的直接观测与表征.在锂化过程中,出现一个近似理想的异质界面(Li4Ti5O12/Li7Ti5O12),界面两侧Ti离子呈不同价态分布(Ti3+/Ti4+).而随着锂离子在材料中的嵌入和脱出,TiO6八面体里面的Ti—O键会产生相应的收缩或拉伸(“呼吸”模型),而这种键长的变化直接导致材料在不同区域的电子电导率产生质的变化(由绝缘体的Li4Ti5O12向近似导体的Li7Ti5O12转变),而基本不影响材料的离子电导率,这是材料具有优良倍率性能的重要条件.借助原子分辨的EELS分析研究锂化以后的Li7Ti5O12表面, 观测到材料表面的Ti3+自发氧化成Ti4+,这个电荷转移过程可以诱导电极材料界面上的副反应,可以合理解释钛酸锂电池产气的原因.进一步将钛酸锂电池用于储钠研究发现了晶格中存在Li4Ti5O12/Li7Ti5O12/Na6LiTi5O12三相分离机制,深化了对电极材料过程动力学的认识.这些重要研究结果为钛酸锂的工业化应用提供了重要的结构基础与理论指导.  相似文献   

18.
采用自蔓延燃烧法制备钕离子掺杂锰酸锂(LiMn1.99Nd0.01O4)纳米颗粒,通过XRD、SEM、CV等表征分析了材料的晶体结构、微观形貌和电化学性能.结果表明:钕离子掺杂不影响晶体结构,但可减小LiMn2O4颗粒粒径,进而提高其电化学性能.在0.2C倍率下的放电比容量高达125.6 mAh·g-1.在1C倍率下的首次放电容量为118.4 mAh·g-1,循环100次后的放电比容量为110.4 mAh·g-1,容量保持率为93.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号