首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
利用室内周期循环加载试验,对黄河水下三角洲土体中孔隙水压力的变化加以测定,通过对波浪水槽试验和动三轴试验2种方案所获数据分析认为黄河水下三角洲土体(粉土、粘质粉土、粉质粘土)存在一破坏的循环极限荷载。在小于此极限循环荷载作用情况下,土体中孔隙水压力总体呈现下降趋势,没有积累升高的过程,不同于砂土在循环荷载作用下孔隙水压力升高导致液化的情况。这一现象对判别黄河水下三角洲土体破坏机制的研究有重要意义。  相似文献   

2.
为了解尾矿粉土在振动作用下的孔隙水压力特性,采用GDS动三轴试验系统对尾矿粉土进行了循环荷载试验,通过施加循环应力使尾矿粉土达到完全液化状态,研究了相对密度及固结围压对尾矿粉土孔隙水压力特性的影响.研究结果表明,尾矿粉土的孔压增长过程可分为4个阶段:孔压快速增长阶段、孔压稳定增长阶段、结构破坏阶段及完全液化阶段;相对密度及围压的增加可以提高其抗液化能力.对比尾矿粉土及砂土试验结果发现:循环荷载作用下尾矿粉土的孔隙水压力特性与砂土不同,其孔压增长规律可用一个双S型模型描述,该模型对粉土和砂土均具有较好的适用性.  相似文献   

3.
孔隙压力对土的力学性能和变形特性都有影响.利用自研设备对无载和加载工况升降水位过程砂性土中的孔隙压力变化进行了监测,获得了砂性土孔隙压力变化的一些规律.水位上升和下降引起的孔隙压力路径不重合;水位上升时孔隙压力零点在测点或测点以上,水位下降时孔隙压力零点在测点以下;加载试验中,与同条件不加载情况相比,孔隙正负压力均增加,增加值与附加应力在趋势上一致.  相似文献   

4.
利用饱和-非饱和多孔弹性介质控制方程建立有限元计算模型,考虑弹性模量随深度增加及其在水平方向的变化,分析了非饱和土中超静孔隙水压力消散和土体的变形特性.通过与相关文献结果对比可验证文中采用的计算模型的正确性.研究结果表明:土体的非均质性对超静孔隙水压力的消散和土体的变形均有显著影响;弹性模量沿深度方向变化率越大,非饱和土体吸收的压力越多,导致超静孔隙水压力消散得越快,并且初期变形阶段和固结完成后,土体的变形幅度减小.  相似文献   

5.
循环荷载下天津软黏土不排水强度弱化模型研究及应用   总被引:1,自引:0,他引:1  
波浪等循环荷载作用下,饱和软黏土产生超孔隙水压力,土体强度弱化,导致地基承载力和防波堤等近海结构稳定性降低.基于土体强度弱化的原理,建立一种表示土体不排水强度在不同动应力水平下随循环荷载作用次数变化的强度弱化模型.模型通过建立软黏土不排水强度与孔隙水压力增长规律的关系,表示出软黏土不排水强度弱化的具体过程.在有限元软件ABAQUS上进行二次开发,对天津港防波堤地基软黏土的动、静三轴试验进行数值模拟运算,并与试验数据对比.结果表明,文中建立的强度弱化模型简单准确,能够较好地表示土体不排水强度弱化过程.将模型应用到波浪荷载作用下部分回填换砂处理的软土地基上沉箱结构进行沉降变形分析,并与未考虑土体强度弱化的静力、拟静力有限元分析结果进行对比,研究了强度弱化对结构沉降变形的影响.  相似文献   

6.
亓星  陶叶青 《科学技术与工程》2020,20(16):6357-6361
中国黑方台地区发育了大量突发型黄土滑坡,这类滑坡变形破坏过程中伴随了显著的超孔隙水压力,通过现场调查概化这类滑坡的特征建立模型进行室内物理模拟,还原了这类滑坡的变形破坏过程,并分析了孔隙水压力与位移的响应规律,结果表明:滑坡变形前地下水产生的孔隙水压力需要达到一定程度,坡体破坏前出现了持续性的缓慢蠕动,在此期间滑坡体后方的孔隙水压力产生波动导致变形加快,进一步促使滑坡体内部产生超孔隙水压力,最终使土体产生显著的超孔隙水压力导致滑坡失稳破坏。黑方台地下水产生的静孔隙水压力是使突发型滑坡产生蠕动变形的原因,而蠕动变形导致的孔隙水压力波动是造成滑坡变形突增失稳破坏的诱因。  相似文献   

7.
粉性土中土压平衡盾构施工的扰动影响   总被引:1,自引:0,他引:1  
结合上海轨道交通明珠线二期工程“溧阳路站—临平路站”区间盾构推进工程,进行静力触探试验、超孔隙水压力测量以及地面沉降的量测.从上述不同角度,分析了EBP(土压平衡)盾构在粉性土中推进对土体扰动、变形的影响,研究了受影响区域土体静力触探强度、超孔隙水压力随着时间的变化趋势及随之表现出来的地面变形趋势,得出了超孔隙水压力发展的规律及经验公式,并总结分析了三者之间的相互关系.为今后盾构施工扰动的分析及控制提供有益的参考.  相似文献   

8.
风暴浪导致的黄河口水下土体破坏试验研究   总被引:1,自引:0,他引:1  
本文试验利用取自黄河水下三角洲的样品,重塑后铺设水槽底床进行水槽试验,并利用原状土进行动三轴试验,2种试验均测定土体内的孔隙水压力。根据各种情况下孔隙水压力的变化记录,表明土体破坏同时其孔隙水压力产生骤变。将本文试验结果与在黄河水下三角洲不稳定区的原位沉积动力学试验孔隙水压力测试结果对照,说明黄河三角洲水下斜坡某些土体的破坏,未出现波浪循环荷载作用下孔隙水压力积累升高所导致的土体液化破坏,而是风暴浪对海底的强切应力作用致使十体产牛剪切破坏。  相似文献   

9.
降雨诱发双层土坡地下水上升及稳定性分析   总被引:1,自引:0,他引:1  
降雨入渗使土坡坡体内孔隙水压力增加,水位上升而导致边坡稳定性下降。建立两种双层土坡模型,分别研究在暴雨、大雨和小雨三种情况下坡体内孔隙水压力变化规律;同时分析降雨引起地下水上涨的运动特性及土坡稳定性变化。研究结果表明:不同类型土质边坡在降雨情况下土体孔隙水压力变化规律是不一样的,雨水入渗的深度也不同;降雨过程中,上层为低饱和渗透性土体下层为高饱和渗透性土体的边坡接触面上孔隙水压力比临近土体的孔隙水压力大,这不同于均质边坡。降雨情况下,土体性质和降雨特性对地下水上涨的运动规律和边坡稳定性有重要的影响。  相似文献   

10.
高速滑坡形成机制:土粒子破碎导致超孔隙水压力的产生   总被引:7,自引:0,他引:7  
通过排水剪切试验,揭示出易于产生粒子破碎的土体易于产生体积变化,土体初始结构和粒子破碎难易度对体积变化各阶段的影响。在与之相对应的不排水试验中,产生粒子破碎的土体最终产生了较高的超孔隙水压力,而且孔隙水压力产生的各阶段与排水试验中的体积变化阶段具有良好的对应关系。揭示了不同诱因产生的高速滑坡的共同特征,即在长距离运动中,由于粒子破碎的影响,滑动面土体在不排水条件下,抗剪强度因超孔隙水压力而上升而下降,最终导致高速滑坡。同时,由于粒子破碎将导致土体自身渗透系数降低,土粒子破碎因而具有促进超孔隙水压力产生和减缓超孔隙水压力消散的双重效果。  相似文献   

11.
饱和层状砂土三轴液化试验   总被引:1,自引:0,他引:1  
为了研究具有层状结构的饱和砂土液化时孔隙水压力的发展规律,利用GCTS-STX-050气动三轴测试系统对层状饱和砂土进行等幅应变控制下的液化试验研究,分析了试样中不同粉粒夹层厚度、位置及分布层数对液化影响.试验结果表明,试样液化所需的循环加载次数与粉粒夹层的厚度呈非线性关系,存在一临界厚度使得循环加载次数最大;粉粒层能够有效地阻碍细粒层产生的超孔隙水压力的传递,而细粒层对粉粒层产生的超孔隙水压力阻碍效果不明显;相同厚度下,粉粒夹层两层分布较一层分布对超孔隙水压力的阻碍作用更加明显.试验结论可为地震作用下具有层状结构的饱和砂土液化规律的探索提供一定的参考依据.  相似文献   

12.
软土地区储罐群地基沉降的三维数值模拟   总被引:1,自引:0,他引:1  
在软土地区修建储罐群的过程中,不均匀沉降成为工程的主要控制因素之一.由于沉降问题受到储罐间距、孔隙水压力变化等动态因素的影响,使得问题的解决趋于复杂.运用FLAC~(3D)数值模拟软件,建立三维非线性有限差分模型,综合各种变化因素的影响,研究软土地区不同净距的储罐群地基的变形及应力分布,模拟分析不同净距对储罐沉降和沉降差的影响.结果表明,在考虑地基土附加应力和超孔隙水压力共同作用时,储罐净距为0.6D(D为储罐直径)左右时比较合理.  相似文献   

13.
利用GDS动三轴试验系统研究尾矿粉土液化后的变形特性.首先对饱和尾矿粉土进行振动使其液化,再施加静力荷载;分析了固结围压、相对密度、加载速率等因素对变形与孔隙水压力的影响,研究了饱和尾矿粉土液化后的流动变形与孔隙水消散的变化规律.结果表明:不排水试验条件下,固结围压、相对密度对尾矿粉土液化后的流动变形特性影响明显,而加载速率的影响较小;加载试验的最终孔压比一般介于0.7~0.9之间,相对密度对孔压消散过程的影响大于围压的影响.根据试验结果提出了描述尾矿粉土液化后变形特性的三参数模型,并进行了模型参数的拟合计算及模型验证和对比,结果表明该模型具有良好的适用性.  相似文献   

14.
严军  李晓思  李哲  刘路路 《科学技术与工程》2023,23(24):10469-10478
为了探明注浆法应用于黄土地区某既有高层建筑地基加固产生负面作用的原因,用以指导该建筑物进一步的加固工作。本文依托某建筑物纠偏工程讨论了注浆法在局部非饱和黄土地基中的适用性。现场监测了建筑物的沉降、倾斜以及地基土孔隙水压力指标,结合地质条件以及前期加固方案,分析了注浆后地基土承载力不升反降、建筑物沉降速率增大的原因。结果表明:注浆开始后,建筑物沉降速明显增大,且南侧高于北侧,随着施工的暂停和恢复,沉降速率随之减小和增大。最大沉降速率达2.05 mm·d-1,南北两侧最大沉降差达40.78 mm。孔隙水压力变化趋势与沉降速率类似,最大孔隙水压力达990.21 kPa。停止注浆后,地基南侧各处孔隙水压力有所降低,降幅约8.85%~45.56%。注浆使建筑物产生不均沉降的原因为,未凝结浆液中的水在注浆压力和较高的孔隙水压力作用下逐渐渗透到本就排水条件不良的地基土中,且由于地基内初始孔隙水压力及初始排水条件的差异,对地基产生了不均匀的影响,最终体现在建筑物不均匀沉降上。可见对于类似的排水条件不良且孔隙水压力过大的局部非饱和黄土地基,注浆加固前应采取打入排水板、泄压孔等措施消散孔隙水压力,然后再进行注浆施工。  相似文献   

15.
针对郑州东区粉土和粉质黏土交互分布的成层土地基条件,以基坑实际降水工况为基础,建立降水井动水位面控制的基坑降水--沉降分析模型.即使在粉细砂层中给定的降水井动水位面的位置有所偏差,仅对降水深度有所影响,而对沉降计算结果的影响较小.以地铁车站基坑降水沉降模型为例,运用有限元法对成层土基坑降水所产生的位移场进行分析.结果表...  相似文献   

16.
通过对基坑工程进行考虑孔压消散与变形耦合效应的有限元分析,得到了坑外渗流自由面随时间的变化规律,并研究了坑外渗流自由面变化对基坑内外超静孔压、土水势以及基坑变形的影响.研究表明,考虑坑外渗流自由面变化时,坑内外的超静孔压和土水势都减小;坑外渗流自由面的变化使得坑外水压力减小,有效应力增加,并引起坑内外的水头差降低,因而使得支护墙的水平位移和坑底的隆起变形减小,坑后的地表沉降增加.  相似文献   

17.
基于VG(Van Genuchten)模型多层土含水率方程,建立了考虑边坡倾角的含水率与基质吸力控制方程,提出了土层间渗透系数比不同的情况下多层土坡入渗深度计算方法.通过在Geo-Studio软件中的Seep/w板块建立多层土的一维和二维模型,分析雨水入渗过程中土层交界面处饱和滞水区形成过程及不同降雨条件下多层土坡稳定性变化规律,并验证本文计算方法的正确性.结果表明:多层土坡降雨过程中,土层交界面处体积含水率、孔隙水压力变化范围较大,对于各层渗透性不同的多层土坡,在同一降雨强度下,渗透系数比越大,则交界面处滞水向下消散的速率折减得越多,交界面处孔隙水压力变化范围越大;多层土坡在交界面处出现饱和滞水区后孔隙水压力急增,导致土抗剪强度骤降,进而引发土坡稳定性系数大范围下滑.上述结论为降雨边坡预警工作提供参考依据.  相似文献   

18.
为了研究周期水压力对岩石的变形特性,利用MTS815岩石力学多功能试验机,对砂岩试样进行了不同轴向应力(峰值强度σmax的60%、70%和80%)条件下孔隙水压力循环试验,还运用Matlab中小波分析对岩石变形曲线中常见的不规则小变形波动干扰曲线进行处理.试验结果表明:随着恒定轴向应力的增大,周期水压力作用下疲劳变形将加速岩石的破坏;随着孔隙水压力循环次数的增加,塑性滞回环呈疏一密一疏的变形演化过程;运用小波分析方法对周期水压力作用下砂岩受多种因素的干扰的变形曲线进行分解、重构处理及评价,从而得到最优分解尺度的基本曲线较好的吻合了试验曲线,更好的揭示了岩石变形的演化规律.  相似文献   

19.
软土地基三维固结分析及其工程应用   总被引:2,自引:0,他引:2  
采用非线性比奥(Biot)固结有限元法研究软土地基的固结变形,推导了有关公式,编制了相应的计算程序,并对某工程大型沉井封底后沉井的变位和地基应力、孔隙水压力的分布及消散过程进行了研究。结果表明,天然地基下,通车后沉井有南倾趋势;地基应力不大,应力水平较低,地基土不会发生塑性剪切破坏;孔压逐渐减小,地基固结度逐渐增大。  相似文献   

20.
可液化土层的位置对土层-地下结构地震反应的影响   总被引:1,自引:0,他引:1  
为了研究不同位置的液化土层对地下结构地震反应的影响,采用PL-Fin土体液化本构模型,使用FLAC3D进行了研究,总结了液化土层发生液化大变形时刻液化区分布、孔隙水压力与超静孔隙水压力比变化规律及差异、地下结构的位移及差异沉降规律,并与非液化场地下的地下结构地震反应进行了对比.主要结论有:当结构底部存在液化土层时,引起的结构位移最大,使结构下沉;结构两侧的土体液化会引起结构上浮,并使侧墙水平向向层间位移和顶底板竖向层间位移增加;结构整体位于液化土层中时,土体位移、结构位移和结构层间位移差都不是最大值,仅研究结构整体位于液化土层的规律存在不足;结构周围、两侧、底部、底部45°位置、左右两侧和底部45°位置以及底部和底部45°位置存在液化土层(B+C)位置共计6种工况下结构顶板y向层间位移变化规律基本一致,但车站不同位置存在液化土层,土层液化的反应和对结构的影响存在一定差异;液化大变形发生在孔隙水压力和超孔压比突增后的1~3s后,因此可由孔隙水压力和超孔压比的突变判断是否发生液化大变形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号