首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
进行了转速、平均有效压力、压缩比、进气温度和冷却水温对柴油机缸内瞬态传热影响的实验研究.试验在柴油机燃室壁面6个位置各安装1支快速响应薄膜式热电偶,在对应各测点沿竖壁一定深度布置镍铬一镍硅普通热电偶,分别测量壁面瞬态温度和坚壁一定深度位置的平均温度.在实测基础上以温度为边界条件,根据一维导热模型计算瞬态传热率.文中对实验结果作了扼要分析,得出了多参数对瞬态传热影响的基本规律.  相似文献   

2.
对影响柴油机燃烧室零件传热损失大小和热负荷高低的若干因素进行了研究.利用有限元方法模拟计算了燃烧室零件温度场和热流密度分布,并进行了实验测量.针对改变结构设计和冷却方案的不同情况进行了热负荷和传热损失的对比分析,并分析了燃烧室壁温变化对柴油机性能的影响,提出了低散热柴油机燃烧室零件的优化设计思想和方案.  相似文献   

3.
对影响柴油机燃烧室零件传热损失大小和热负荷高低的若干因素进行了研究。利用有限元方法模拟计算了燃烧室零件温度场和热流密度分布,并进行了实验测量。针对改变结构设计和冷却方案的不同情况进行了热负荷和传热损失的对比分析,并分析了燃烧室壁温变化对柴油机性能的影响,提出了低散热柴油机燃烧室零件的优化设计思想和方案。  相似文献   

4.
冯青静  王国伏 《科技信息》2011,(11):73-73,91
通过对内燃机车柴油机运用环境、使用状况等进行分析,结合实际故障的处理,分析、探讨机车柴油机常见异响的判断和处理办法。  相似文献   

5.
在DF4B内燃机车上,冷却风扇的驱动采用静液压传动技术.该技术能满足机车柴油机功率调节范围大、热负荷变化频繁的要求.静液压系统一旦发生故障就不能保证柴油机正常工作,严重时甚至危及机车的运行安全.静液压系统常见故障最终反映在风扇不转或转速不正常,造成油、水温度过高,从而影响柴油机的正常工作.本文对静液压系统常见故障进行了分析,指出其产生的处所及其原因,提出了处理方法和改进的措施.  相似文献   

6.
柴油机气缸盖传热规律研究   总被引:2,自引:1,他引:1  
利用Star CCM+软件,采用多面体网格技术和基于流体体积函数方法(VOF)的两相流沸腾模型,对单缸柴油机气缸盖的冷却传热进行了流-固耦合仿真计算,通过气缸盖的测试温度对仿真结果进行了校验.在此基础上,对气缸盖的传热规律进行了研究.研究表明,单缸柴油机负荷增加时,气缸盖冷却水壁面排气门鼻梁区的传热系数HTC呈现出在较小负荷增加迅速,在较大负荷增加变缓的规律;气缸盖向冷却水传递的热流量则随单缸柴油机负荷的提高呈现出加速上升的趋势,转速为2 000r.min-1时,单缸柴油机功率由44kW增加到61kW,气缸盖传递给冷却水的热流量增幅为31.4%;功率由61kW增加到80kW,气缸盖传递给冷却水的热流量增幅为61.3%.  相似文献   

7.
板坯结晶器钢水凝固的数值模拟   总被引:10,自引:1,他引:9  
以实测结晶器铜板温度计算的热流量作边界条件,采用有限元方法,建立了结晶器内凝固传热方程.对凝固传热方程进行了离散化,利用ANSYS商业软件进行求解,得到凝固坯壳的应力、应变情况,从而确定连铸结晶器壁的合理锥度.  相似文献   

8.
基于瑞利散射理论,建立了一个简便分析柴油机缸内炭烟辐射传热的理论模型.该理论模型显示,缸内炭烟的辐射传热正比于缸内炭烟质量与其温度的5次方之乘积.通过对一台直喷式柴油机的多维仿真,验证了该模型作为一个全局模型的情况.结果显示,采用完全相同的输入数据时,该模型获得了与经典参考模型相吻合的结果,且模型的稳健性很好.模型中不含可调常数或直接与工况相关联的参数,比经典模型更直观、简洁,更适于柴油机缸内炭烟辐射传热的工程应用分析.  相似文献   

9.
地源热泵中U型埋管传热过程的数值模拟   总被引:5,自引:0,他引:5  
以钻孔壁为界将U型埋管的换热区域划分为钻孔内外两部分,并分别采用稳态与非稳态传热来分析求解,两区域模型间通过钻孔壁温耦合连接,以构成完整的埋管传热模型.对于钻孔以外部分,采用变热流圆柱源模型来求解钻孔瞬时壁温.钻孔以内部分,在考虑埋管流体温度的沿程变化及U型管2支间热干扰的基础上,基于能量平衡建立了钻孔内U型埋管的稳态传热模型.用所建U型埋管传热模型对地源热泵系统的运行特性进行了动态模拟,得出了埋管出口流体温度、钻孔瞬时壁温、单位埋管吸热量及热泵COP随运行时间的变化规律.所建埋管模型可为地源热泵系统的动态模拟、优化设计及其改进提供参考.  相似文献   

10.
为了更好地了解柴油机水腔内冷却液的流动和传热问题,根据Eulerian两相RPI(rensselaer polytechnic institute)沸腾模型,建立了一套适用于柴油机水腔沸腾换热的气液两相流模型.以某直列四缸柴油机为研究对象,通过缸盖温度场实验对缸盖火力面20个测点进行温度测量,并将实验测得的温度值与传统单相强制对流和两相流模拟得到的温度值进行对比.结果表明:与传统单相流模型相比,Eulerian两相RPI沸腾模型的精度更高,误差小于5%;优化后缸盖水腔底部冷却液的流动与冷却更加均匀,水腔壁面最高温度降低了4.05℃,第三、四缸水腔鼻梁处高温区域面积减小,缸盖水腔换热效果得到改善.研究结果为柴油机缸盖水腔沸腾换热研究和冷却水腔的设计提供了依据.  相似文献   

11.
Based on experimental results, a new convection heat transfer correlation for adiabatic diesel engines is established in the form of analogue equation. Some characteristic parameters in the correlation are defined with special consideration to make it more suitable for adiabatic diesel engines.  相似文献   

12.
应用CFD数值软件Fluent对135直喷式非增压柴油机缸内燃烧过程和辐射传热进行数值模拟.模拟分析了缩口、直口、扩口三种燃烧室线型对于压力场、速度场、温度场和辐射换热的影响.最后对计算结果进行了深入地分析,总结了柴油机燃烧室型线对燃烧过程和辐射换热影响的规律.  相似文献   

13.
直喷式柴油机缸内气体辐射传热的研究   总被引:1,自引:0,他引:1  
在一台直喷式柴油机上实测了气缸内辐射和火焰辐射热流量,在此基础上,研究了气缸内气体辐射传热及其随负荷和转速变化的规律,分析了气体辐射热流量占气缸内辐射热流量和总热流量的比例随负荷和转速变化的规律.研究表明:气体辐射热流量随负荷的增加而增大,随转速的升高而减小;气体辐射热流量约占辐射热流量的15%~30%左右,此比例随负荷的减小、转速的升高而增大;气体辐射热流量约占气缸内总热流量的3%~5%左右,此比例随着负荷及转速的增加而减小.  相似文献   

14.
柴油机缸内局部瞬态对流换热的模型预测   总被引:1,自引:0,他引:1  
在电机倒拖运行内燃机传热模型的基础上,考虑实际柴油机着火工作时燃烧放热率及燃烧引起的紊流运行对缸内传热的影响,发展了一个柴油机燃烧室局部瞬态对流换热预测模型,模型数值计算采用了SIMPLE算法,与不同转速,负荷,进气涡流比和压缩比时传热率的实测结果表明,本文着建立的模型能较好的预测不同参数变化时的局部瞬态对流换热。  相似文献   

15.
一种适用于柴油机结构温度场计算的缸内传热模型   总被引:1,自引:0,他引:1  
基于量纲分析式h(Ф,i)=C(Ф)d-0.2 p0.8 w0.8 T-0.8μ-0.47eλ0.67ec0.33p分析了柴油机的缸内三维局部传热情况,其特征参数选取缸内瞬态流动传热参数,并通过Woschni模型计算传热总量,在每个曲轴转角条件下,保证局部传热计算中对全部壁面网格热流求和所得传热总量与Woschni模型的计算值相等,以确定待定系数C(Ф).同时,将改进的缸内传热模型应用于一款单缸水冷自然吸气式四冲程直喷柴油机的缸内传热计算,所得模拟结果与实验结果吻合.  相似文献   

16.
本文用热力学第一及第二定律分析对流换热过程中传热及流动两方面的性能,建立定量分析换热性能的(火用)损失率关系式,并利用它确定各种基本换热过程在给定条件下的最佳使用范围,以及比较各种换热方式的性能差异,为工程上采用换热过程提供综合性能评价的指标.  相似文献   

17.
通过分析船舶柴油机余热,说明采用高温热泵回收柴油机缸套冷却水余热的优点,并计算出可回收利用的缸套冷却水余热量;进一步分析了高温热泵回收缸套冷却水余热应满足的条件,在此基础上,确定了高温热泵的类型,给出了用于回收柴油机余热的高温热泵的系统原理图,阐述了系统的工作原理和研究中存在的难点,推荐了两种较为适宜的高温热泵工质.  相似文献   

18.
为了降低柴油机气缸盖的热负荷,以重载柴油机气缸盖为研究对象,进行了缸盖底部温度测量实验,并建立了发动机一维工作过程计算与缸盖内三维流动、传热与应力的多场耦合仿真模型,在此基础上提出了优化鼻梁区冷却通道尺寸并削薄缸盖底板的优化设计措施.结果表明:改进措施使该气缸盖的最高工作温度由336.3℃降低为325.7℃,最大热机耦合应力由498 MPa降低为491 MPa,有效降低了气缸盖的热负荷.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号