首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究风屏障透风率对侧风下大跨度斜拉桥车桥系统耦合振动的影响,通过风洞试验得出在桥梁上设置不同透风率风屏障情况下桥梁和桥上不同位置处列车的三分力系数,在此基础上根据弹性系统动力学总势能不变值原理进一步建立考虑风荷载的车桥系统耦合振动方程对侧风作用下大跨度斜拉桥车桥动力响应进行计算。研究结果表明:当风屏障透风率由10%增大至40%,迎风和背风工况下跨中处桥面竖向位移最大值均呈现增大趋势;风屏障透风率对迎风工况车辆动力响应的影响较大;当风屏障透风率由30%增大至40%时,车辆的脱轨系数、轮重减载率和横向摇摆力增幅较为明显。  相似文献   

2.
利用数值模拟方法探究风屏障参数对流线型桥梁气动特性的影响;分析风屏障对不同桥型气动特性的影响并进行横向对比;讨论风屏障的透风率对车桥系统的气动特性以及流场的影响,通过分析车桥的三分力系数、压力云图、速度流线图、车桥表面风压分布以及风剖面等特征,揭示风屏障对车桥系统气动特性的影响机理。研究结果表明:风屏障能降低主梁上方的流速,从而减小列车的阻力和力矩,但同时也增加了桥的阻力,因此,安装风屏障可提高列车的行驶安全性但不利于桥梁抗风;针对流线型主梁断面,当风屏障高度为3 m且透风率为30%时为最优组合,此时车桥系统的阻力系数可达到最小值1.33;风屏障对不同桥型的遮蔽效应不同,相同的风屏障遮蔽效应对流线型主梁断面的影响远大于对钝体主梁断面的影响。  相似文献   

3.
采用流体力学软件(Star CCM+)建立32 m简支箱梁和CRH2型高速列车的全尺寸模型,对不同风屏障开孔形式的车桥系统进行数值模拟,研究了风屏障开孔形式对风屏障挡风效率和流场的影响,分析了车辆三分力系数和桥梁三分力系数随开孔形式的变化规律。结果表明:风屏障的开孔形式对车辆的阻力系数影响较大,且随着开孔边数的增加各车辆的阻力系数先减小后增大,开孔形式为格栅形时阻力系数最大。采用格栅形式时中车比头车的力矩系数大了63.6%;中车的阻力系数和力矩系数随开孔边数的增加基本呈下降趋势,位于背风侧时中车阻力系数和力矩系数变化较缓;随着风屏障开孔边数的增加,桥A段、桥B段和桥C段的CRWBD都呈增加趋势,其中桥B段的贡献率增加地最多,增加了12.2%。风屏障对阻力和力矩的贡献率CRWBD、CRWBM基本都超过了50%。  相似文献   

4.
为考虑侧风作用下风障对桥上高速列车气动特性的影响,以高速列车与双线简支箱梁桥为原型,自主研制了缩尺比为1:20的风障-车-桥模型风洞试验模型装置。测试高速列车的头车、中车及尾车各自的气动力。分析风速、列车位于桥梁的横向位置、不同风障高度与透风率、风偏角对高速列车气动系数的影响,最后以静力轮重减载率作为风障防风效果评价指标,给出风障气动选型参数建议值。研究结果表明:雷诺数对车-桥系统的气动性能影响有限;桥梁上设置风障可明显减小列车所受气动力;列车位于迎风侧线路时运行时所受气动荷载较大;随着风障高度的增大,列车气动力系数减小;当风障增加到某一高度后列车气动系数基本不再随风障高度变化,但随着透风率增大而增大;当风偏角小于等于20°时,高度为4 m,透风率为0%风障的挡风效果较好,而当风偏角大于20°时,高度为4 m,透风率为30%风障的挡风效果较优。研究结论可为实际工程中风障气动选型提供参考。  相似文献   

5.
基于Realizableκ-ε湍流模型的延迟分离涡模拟(DDES)方法,求解不同缩比尺度和来流速度下列车周围非定常流场.通过改变模型缩比尺度和来流速度来研究列车非定常气动特性的雷诺数效应和尺度效应.研究结果表明:随雷诺数增加,各节车气动阻力系数均方根基本呈现减小趋势,且波动明显;随雷诺数增大,列车各节车气动阻力系数和升力系数标准差均先减小后增大,且波动明显;气动力系数功率谱密度随雷诺数增大而变小;雷诺数对气动力系数主频有影响,但无明显规律;列车气动力的尺度效应显著,随雷诺数增大,列车气动力的尺度效应减弱,且列车升力的尺度效应相对显著;列车非定常气动阻力和升力振动的尺度效应随雷诺数增大而减弱,且列车非定常升力振动的尺度效应更加显著;尺度效应不改变列车气动力以低频为主的振动特性和列车气动力功率谱密度的分布规律,对气动力振动主频及其功率谱密度有显著影响.  相似文献   

6.
基于计算流体动力学,采用数值模拟的方法研究了车桥耦合体系气动力特性和风压分布.首先选取了雷诺应力湍流模型,分别建立了桥梁单体模型、车辆单体模型和车桥耦合体系模型.计算了3个模型在不同风向角下的气动力系数,并对各自的风压分布进行了比较.车桥耦合体系考虑了车辆和桥梁的耦合效应,在不同风向角工况下,车桥耦合体系的气动力系数,包括升力系数、阻力系数和倾覆力矩系数,都明显增大.计算结果表明,车桥耦合体系与桥梁和车辆各自单体相比较,气动力系数差异较大,故设计中应对此给予重视,以确保行车安全.  相似文献   

7.
为考虑侧风作用下桥梁对高速列车气动特性的影响,以高速列车与双线简支箱梁桥为原型,自主研制缩尺比为1:20的车-桥模型风洞试验模型装置,该装置可改变风偏角、测试对象以及列车与桥梁的相对位置等。测试高速列车的头车、中车及尾车各自的气动力,建立天平坐标系下测试数据转换到整体坐标系的转换关系,讨论雷诺数、车辆在桥面横向相对位置、风偏角对高速列车气动系数的影响。研究结果表明:基于自主研制车-桥模型的风洞试验测试是可行的;雷诺数对车-桥系统的气动性能影响有限;列车位于迎风侧线路时气动影响显著;随风偏角的增大,高速列车的侧力系数、升力系数、侧倾力矩系数存在减小的趋势。测试所得的高速列车气动参数可用于进一步开展风-车-桥耦合振动分析。  相似文献   

8.
以风洞试验方法为主、计算流体力学(CFD)方法为辅,研究不同角度风嘴入流、行人密度和行人横向排列位置条件下的人行桥主梁断面三分力系数的变化规律.结果表明:桥上行人的存在会改变截面周围气流的流态,从而对桥梁断面的静力三分力系数产生显著影响;风攻角在-12°~12°范围内,阻力系数均呈现先增加后减小趋势,负风攻角范围内行人密度是阻力系数变化的主导因素,而正风攻角范围内阻力系数变化受风攻角主导;当风攻角由-12°变化到12°时,小风嘴入流状态下的升力系数和扭矩系数整体逐渐减小,而大风嘴入流状态下的升力系数和扭矩系数整体呈现先增大后减小的趋势,随着行人由迎风侧移动到背风侧,阻力系数略微增大,升力系数显著减小,扭矩系数几乎不变.  相似文献   

9.
基于计算流体动力学理论,采用数值模拟的方法计算高速列车通过双线简支箱梁桥时的气动力系数,考虑列车在编组中的位置、迎风侧和背风侧线路以及风偏角等因素的影响,并将数值模拟结果与风洞实验进行对比分析。根据列车倾覆系数的定义,推出对倾覆临界状态合力作用线与两侧轮轨接触斑连线交点的累计力矩计算式,从而避免求轮轨相互作用力,直接得到车速和风速的相关表达式,并据此得到求临界车速的计算方法,最后对影响列车倾覆稳定性的参数进行分析。研究结果表明:采用数值模拟计算的列车气动力系数与风洞实验结果较吻合;双线简支箱梁桥上迎风侧线路头车所受气动力最大,其侧倾临界车速最低;随弹簧刚度系数、线路曲线半径、轨道超高以及列车质量的增加,临界车速均会增加,不考虑竖向振动加速度将会过高地估计列车侧倾临界车速。  相似文献   

10.
现有冷却塔风荷载研究成果均忽略了施工期的影响,以国内在建世界最高220 m超大型冷却塔为对象,基于大涡模拟(LES)方法获得了施工期冷却塔周围流场信息和三维气动力时程,并将成塔平均风压分布结果与规范及实测曲线进行对比验证了数值模拟的有效性.在此基础上,对比分析了冷却塔施工期平均风压分布规律和流场特性,并基于不同工况下冷却塔周围速度和涡量变化提炼出施工期流场特性与作用机理,揭示了施工期冷却塔脉动风压、极值风压、升/阻力系数及测点间相关性的分布规律,最终基于非线性最小二乘法原理给出了随高度变化的极值风压拟合公式.研究结果表明,端部效应的影响使冷却塔负压极值随施工高度增加由-3.91升至-1.75后降至-2.28,升力系数随施工高度增加逐渐减小,而阻力系数呈先减小后增大的趋势,脉动风荷载的相关性随高度变化先增强后变弱.主要结论可供此类大型冷却塔施工期设计风荷载取值参考.  相似文献   

11.
为了优化高速公路桥梁风屏障参数,研究了风屏障参数对于车桥系统气动特性的影响.通过风洞试验考虑不同高度和透风率的风屏障,分别获取桥梁和车辆的气动力系数,进而得到桥梁在静风稳定性检验风速下的侧向位移和车辆在设计车速行驶下的失稳临界风速.采用多目标遗传算法(NSGA-Ⅱ),以桥梁侧向位移与车辆临界风速为优化目标,将风屏障高度和透风率作为变量,得到相应的Pareto最优解集.利用数据包络法(DEA)对Pareto解集中个体的相对效率值进行评估,最终得到最优风屏障参数.结果 表明:透风率为30%、高度为3.2 m的风屏障对于桥梁和车辆的综合抗风效果最佳.  相似文献   

12.
不发生侧滑为指标的跨海大桥安全行车风速分析   总被引:3,自引:1,他引:2       下载免费PDF全文
为了保证风环境下跨海大桥上车辆的行车安全,必须给出合理的安全行车风速.采用修正的κ-ε方程作为湍流模型的控制方程,对车桥模型的风流场进行了流场分析,得到了桥上车辆的压力分布,进而获得了桥上行驶车辆的阻力系数和升力系数.以车辆不发生侧滑为指标给出了跨海大桥不同桥面特征下的安全行车风速标准,并与普通高速公路的相关安全行车风速进行了比较.结果表明:跨海大桥上车辆的安全行车风速要低于普通高速公路的安全行车风速.  相似文献   

13.
风-车-桥耦合系统的车桥气动特性   总被引:2,自引:0,他引:2  
采用数值模拟方法对风-车-桥耦合系统的车桥气动特性进行分析研究,模拟计算了不同工况下车辆、桥梁的气动力系数。分析了车桥间相互的气动影响.研究结果表明.车桥耦合系统与桥梁和车辆各自单体相比较,气动力系数差异较大,故建议进行风-车-桥系统耦合振动分析时,车桥气动力系数应考虑车桥间的气动影响.  相似文献   

14.
考虑移动车辆荷载对桥梁结构的冲击力是公路桥梁结构设计的重要内容之一.为研究大跨度公路悬索桥各构件冲击作用的影响因素及其敏感性,以官厅水库特大桥主桥为依托进行分析.基于车桥耦合振动原理,采用三轴11自由度车辆模型,分析了车速、桥面不平顺度、车重及横向加载位置对桥梁各构件冲击系数的影响.分析成果表明,桥面不平顺度对桥梁各构件冲击系数有显著影响;车速对冲击系数的影响主要与桥梁各构件的卓越振动频率有关,车速增大并不一定导致冲击系数增大;车重持续增加使冲击系数减小且减幅逐渐降低;横向加载位置的不同对各纵梁横桥向挠度冲击系数的影响有明显区别,随着汽车加载位置的靠近,各纵梁的挠度冲击系数逐渐减小;影响因素的敏感性排序为:桥面不平顺度车速横向加载位置车重.  相似文献   

15.
高速列车侧风效应的数值模拟   总被引:5,自引:1,他引:4  
在侧风作用下,高速列车的空气动力学性能发生显著改变.基于三维定常可压缩流动的N-S方程,采用SSTk-ω两方程湍流模型和有限体积法,对某型高速列车以350 km/h的速度在25 m/s侧风环境中运行的流场结构和气动力进行了数值模拟计算,分析了不同风向角的侧风对列车全车,以及受电弓、转向架和风挡等局部区域的作用.结果表明:在侧风作用下,列车的周围包括转向架处均产生复杂的涡流,压力分布十分复杂,转向架对流场的影响不容忽视;随着风向角(0~90°)的增大,侧向力系数及倾覆力矩系数也增大,列车倾覆及脱轨的风险性增加,且头车的倾覆力矩系数远大于中间车和尾车的倾覆力矩系数,应注重对头车的气动性能研究.  相似文献   

16.
为了充分了解和掌握在强侧风作用下受电弓设备(受电弓和导流罩)对高速列车气动性能的影响,通过风洞试验对强侧风下高速列车运行时的气动性能进行测量和分析.实验结果表明:当侧滑角小于15°时,列车模型阻力系数随着侧滑角的增大而增加,当侧滑角为15°时,阻力系数出现拐点,拐点后阻力系数开始下降,其侧向力系数的绝对值和升力系数随着侧滑角的增大而增加;受电弓设备对头车的影响较小,但可使中车侧向力系数的绝对值及阻力系数明显增加,使尾车的阻力系数明显减小,而侧向力系数明显增加;受电弓设备中“浴盆”式导流罩对高速列车阻力系数的影响强于“挡板”式导流罩的影响,但对升力系数及侧向力系数的影响弱于“挡板”式导流罩的影响.  相似文献   

17.
为研究挡风障参数、来流条件等因素对双幅式箱梁桥桥面阻风性能的影响程度,以某跨海双幅式桥梁为工程背景,开展基于实际桥梁的挡风障模型风洞试验。以车道风速折减系数为阻风性能评价指标,采用正交试验方法,研究挡风障安装片数、来流风偏角、来流风速、圆孔组合方式等参数对双幅式桥梁桥面风场影响,开展挡风障阻风性能影响参数分析。试验结果表明,迎风侧车道风速折减系数大于靠近背风侧车道,风速折减系数差值随着方案阻风性能提升而增加,最大达0.37;挡风障安装片数、来流风偏角、圆孔组合方式对挡风障阻风性能影响显著,来流风速对迎风侧车道等效风速折减系数影响较大,对背风侧车道等效风速折减系数无明显影响;各因素对迎风侧及背风侧车道阻风性能影响程度均有较大差异。安装片数对双幅式桥梁靠近迎风侧车道桥面风场影响较小,而对靠近背风侧车道影响较大,且其与来流风偏角及风速的交互作用不明显。  相似文献   

18.
以某跨海双幅式桥梁为工程背景,开展基于实际桥梁的挡风障模型风洞试验.以车道风速折减系数为阻风性能评价指标,采用正交试验方法,研究挡风障安装片数、来流风偏角、来流风速、圆孔组合方式等参数对双幅式桥梁桥面风场影响,并开展挡风障阻风性能影响参数分析.试验结果表明,迎风侧车道风速折减系数大于靠近背风侧车道,风速折减系数差值随着方案阻风性能提升而增加,最大达0.37;挡风障安装片数、来流风偏角、圆孔组合方式对挡风障阻风性能影响显著,来流风速对迎风侧车道等效风速折减系数影响较大,对背风侧车道等效风速折减系数无明显影响;各因素对迎风侧及背风侧车道阻风性能影响程度均有较大差异.安装片数对双幅式桥梁靠近迎风侧车道桥面风场影响较小,而对靠近背风侧车道影响较大,且其与来流风偏角及风速的交互作用不明显.  相似文献   

19.
基于三维定常N-S方程和从风-车-路-场耦合条件下车辆周围的流场结构,分析路堤不同结构形式对列车气动性能的影响。研究结果表明:当路堤迎风面、背风面斜率一致时,随着坡度的减小,横向力与倾覆力矩呈增大的趋势;当cotα从1.5变为2.0时横向力和倾覆力矩变化非常明显,分别增加25.4%和72.3%,其后气动力变化不明显;当迎风面一定时,随着背风面由斜向上逐步向下倾斜直至成为平地,横向力和倾覆力矩以及升力呈显著增大的趋势;与cotβ=2.0时相比,cotβ=∞即背风面为平地时车辆的横向力和倾覆力矩分别增加63.9%和55.2%。  相似文献   

20.
为研究脉动风场对覆冰导线气动力特性的影响,基于流体动力学软件Fluent,计算了新月形覆冰导线在正弦变化风场下的气动力系数,并与定常风场下的模拟结果进行比较;分析了脉动风的频率和幅值对气动力的影响.结果发现:气动力系数也呈正弦规律变化,其平均值(或绝对值)大于定常风场下的数值,二者随攻角的变化规律相同;脉动风频率大于1 Hz(短周期脉动)时,随频率的增加,气动力系数出现峰值的时间前移,阻力系数和扭转系数的平均值明显减小,幅值变化增大,升力系数的平均值则明显增加,幅值变化减小;脉动风幅值增加时,气动力系数明显增大,且其前半周期随幅值的变化比后半周期的变化要大,具有不对称性.因此工程中预测由导线舞动导致的塔承受载荷以及输电线路防舞设计时,应考虑脉动风场气动力系数对舞动的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号