首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of a new O-superfamily conotoxin, SO3, on sodium current (INa), transient A-type potassium currents (IA), and delayed rectified potassium currents (IK), were examined in cultured rat hippocampal neurons using the whole-cell patch clamp technique. Addition of SO3 caused a concentration-dependent, rapidly developing, and reversible inhibition of voltage-activated currents. The IC50 values for the blockage of INa, IA, and IK were calculated as 0.49, 33.9, and 7.6 μmol/L, respectively. The determined Hill coefficients were 1.7, 0.6, and 1.2, respectively. These results indicate that SO3 can selectively inhibit neuronal sodium and potassium currents.  相似文献   

2.
应用全细胞膜片钳技术记录急性分离的小鼠三叉神经节细胞电压门控性钠通道电流,观察白细胞介素-1β对河豚毒素敏感性钠电流的影响,拟从离子通道水平探讨白细胞介素-1β调节颜面部痛的分子机制.结果发现白细胞介素-1β双相调节三叉神经节细胞河豚毒素敏感性钠通道,低浓度白细胞介素-1β(1ng/mL和10ng/mL)抑制三叉神经节细胞河豚毒素敏感性钠电流锋值,其中1ng/mL白细胞介素-1β使河豚毒素敏感性钠通道半失活电压向超极化方向偏移,复活时间常数延长.高浓度白细胞介素-1β(100ng/mL)在给药即刻增强三叉神经节细胞河豚毒素敏感性钠电流锋值,使河豚毒素敏感性钠通道半激活电压向超极化方向偏移,而不影响其失活及复活特性.高、低浓度白细胞介素-1β对三叉神经节细胞河豚毒素敏感性钠电流锋值的效应具有可逆性特点.结果表明白细胞介素-1β双相调节三叉神经节细胞河豚毒素敏感性钠通道,可部分解释白细胞介素-1β双相调节痛觉的产生及对神经元的损害和保护双相效应.  相似文献   

3.
Using the whole cell patch-clamp technique, we observed the outward K+ currents and studied for the first time the effects of Yb3+ on the currents and kinetics of activation and inactivation in non-excitable NIH3T3 cell. Our results show that the outward K+ currents were promoted with increasing concentration of Ca2+ in pipette solution and saturated at the concentration of 100 μmol/L Ca2+. Yb3+ in bath solution inhibited the currents in a concentration-dependent manner. At the concentration of 1 μmol/L, Yb...  相似文献   

4.
W Nonner  B C Spalding  B Hille 《Nature》1980,284(5754):360-363
Excitation of nerve or muscle requires an orderly opening and closing of molecular pores, the ionic channels, in the plasma membrane. During the action potential, Na channels are opened (activated) by the advancing wave of depolarisation, contributing a pulse of inward sodium current, and then are closed again (inactivated) by the continued depolarisation. As one approach both to obtaining molecular information on the Na channel and towards further defining the recently discovered kinetic interactions of the inactivation and activation gating steps, we have surveyed here the effects of chemical agents reported to slow or prevent Na channel inactivation. We find that many of the agents studied by others on invertebrate giant axons or vertebrate nerve act on our frog skeletal muscle preparation. In addition, we have discovered that simply lowering the intracellular pH nearly eliminates inactivation. The activation mechanism seems to resist modification.  相似文献   

5.
用电化学方法制备了聚甲基红膜修饰电极,该电极对儿茶酚有明显的电催化作用,其氧化峰电位负移70mV,峰电流显著增加,儿茶酚的氧化峰电流在2 0×10-6~1 0×10-4mol/L范围内与其浓度成线性关系,该电极性能稳定,重现性好.  相似文献   

6.
Sensory acuity and motor dexterity deteriorate when human limbs cool down, but pain perception persists and cold-induced pain can become excruciating. Evolutionary pressure to enforce protective behaviour requires that damage-sensing neurons (nociceptors) continue to function at low temperatures. Here we show that this goal is achieved by endowing superficial endings of slowly conducting nociceptive fibres with the tetrodotoxin-resistant voltage-gated sodium channel (VGSC) Na(v)1.8 (ref. 2). This channel is essential for sustained excitability of nociceptors when the skin is cooled. We show that cooling excitable membranes progressively enhances the voltage-dependent slow inactivation of tetrodotoxin-sensitive VGSCs. In contrast, the inactivation properties of Na(v)1.8 are entirely cold-resistant. Moreover, low temperatures decrease the activation threshold of the sodium currents and increase the membrane resistance, augmenting the voltage change caused by any membrane current. Thus, in the cold, Na(v)1.8 remains available as the sole electrical impulse generator in nociceptors that transmits nociceptive information to the central nervous system. Consistent with this concept is the observation that Na(v)1.8-null mutant mice show negligible responses to noxious cold and mechanical stimulation at low temperatures. Our data present strong evidence for a specialized role of Na(v)1.8 in nociceptors as the critical molecule for the perception of cold pain and pain in the cold.  相似文献   

7.
Voltage dependence of Na/K pump current in isolated heart cells   总被引:8,自引:0,他引:8  
D C Gadsby  J Kimura  A Noma 《Nature》1985,315(6014):63-65
The Na/K pump usually pumps more Na+ out of the cell than K+ in, and so generates an outward component of membrane current which, in the heart, can be an important modulator of the frequency and shape of the cardiac impulse. Because it is electrogenic, Na/K pump activity ought to be sensitive to membrane potential, and it should decline with hyperpolarization. However, such voltage dependence of outward pump current has yet to be demonstrated, one reason being the technical difficulty of accurately measuring pump current over a sufficiently wide voltage range. The whole-cell patch-clamp technique allows effective control of both intracellular and extracellular solutions as well as membrane voltage. Applying this technique to myocardial cells isolated from guinea pig ventricle, we have measured Na/K pump current between -140 mV and +60 mV, after minimizing passive currents flowing through Ca2+, K+ and Na+ channels. We report here that strongly activated pump current shows marked voltage dependence; it declines steadily from a maximal level near 0 mV, becoming very small at -140 mV. Pump current-voltage relationships will provide essential information for testing models of the Na/K pump mechanism and for predicting pump-mediated changes in the electrical activity of excitable cells.  相似文献   

8.
D W Hilgemann 《Nature》1990,344(6263):242-245
A plasmalemmal Na(+)-Ca2+ exchange mechanism is an important electrogenic determinant of contractility in cardiac cells. As in other cell types, calcium influx by Na(+)-Ca2+ exchange is secondarily activated by cytoplasmic calcium and probably ATP, but these modulatory mechanisms are either absent or altered in isolated cardiac sarcolemmal vesicles. Involvement of a calcium-dependent protein kinase in exchange regulation has been suggested but not verified. Here I describe measurements of outward Na(+)-Ca2+ exchange current, corresponding to calcium influx, in giant excised sarcolemmal patches from guinea pig myocytes. The exchange current is stimulated by both calcium and Mg-ATP from the cytoplasmic face, evidently through separate mechanisms. Activation by cytoplasmic calcium takes place within seconds, is reversible, and does not require ATP. Stimulation by Mg-ATP reverses only slowly over greater than 10 min, or not at all. Unexpectedly, a substantial decrease in exchange current occurs during activation by cytoplasmic sodium, which seems to reflect an inactivation process rather than ion concentration changes or a 'first pass' exchange cycle. This apparent inactivation, and the modulations by cytoplasmic calcium and Mg-ATP, are all abolished by brief treatment of the cytoplasmic surface with chymotrypsin, leaving the exchanger in a maintained state of high activity. Therefore, limited proteolysis deregulates Na(+)-Ca2+ exchange and could contribute to the loss of secondary regulation of the exchange in isolated sarcolemmal vesicles.  相似文献   

9.
J F Storm 《Nature》1988,336(6197):379-381
A central aspect of neuronal function is how each nerve cell translated synaptic input into a sequence of action potentials that carry information along the axon, coded as spike frequency. When transduction from a graded depolarizing input to spikes is studied by injecting a depolarizing current, there is often a remarkably long delay to the first action potential, both in mammalian and molluscan neurons. Here, I report that the delayed excitation in rat hippocampal neurons is due to a slowly inactivating potassium current, ID. ID co-exists with other voltage-gated K+ currents, including a fast A current and a slow delayed rectifier current. As ID activates in the subthreshold range, and takes tens of seconds to recover from inactivation, it enables the cell to integrate separate depolarizing inputs over long times. ID also makes the encoding properties of the cell exceedingly sensitive to the prevailing membrane potential.  相似文献   

10.
The properties of the inward current of medulla terminalis-X-organ (MTXO) cells isolated from the Penaeus japonicus eyestalk were studied with the whole-cell clamp technique in the presence of Ca2+ and K+ channel blockers. The inward currents had a threshold at about −50 mV and peaked at −10 mV. The reversed potential (Vrev) was very close to VNa, the theoretical Nernst equilibrium potential for Na+. Vrev followed VNa when the external Na+ concentration was varied and the currents were entirely suppressed by 30 nM tetrodotoxin (TTX), indicating that it was carried by Na+. The smooth line of concentration-dependent inhibition of sodium currents by TTX represented the best fit with the Hill equation, yielding an IC50 of 2.1 ± 0.1 nM. The values of the half-maximal activation voltage Vh were −20.6 ± 0.5 and −19.3 ± 0.5 mV, respectively, in the absence and presence of 2 nM TTX. TTX had no significant effect on the voltage dependence of steady-state activation and inactivation of INa. Taken together, the results suggest that the inward current recorded under our experimental conditions was carried by sodium ions flowing through fast voltage-dependent Na+ channels.  相似文献   

11.
针对塞来昔布对与心脏毒性密切相关的钠离子通道Nav1.5电生理特性的影响进行了研究.采用全细胞膜片钳技术,检测塞来昔布对Nav1.5的电生理特性的影响,包括电流峰值、电压依赖性激活、电压依赖性失活以及恢复动力学.研究结果表明,塞来昔布对Nav1.5的峰电流具有抑制作用,且呈浓度依赖性,其抑制作用的IC50值为1.54×10-8mol/L;塞来昔布促进了Nav1.5的激活及失活过程,使其难以恢复到静息状态.塞来昔布对Nav1.5峰电流的明显抑制作用,表明其潜在的心脏风险可能与Nav1.5密切相关.  相似文献   

12.
S Charpak  B H G?hwiler  K Q Do  T Kn?pfel 《Nature》1990,347(6295):765-767
Excitatory amino acids mediate fast synaptic transmission in the central nervous system through the activation of at least three distinct ionotropic receptors: N-methyl-D-aspartate (NMDA), the alpha-amino-3-hydroxy-5-methyl-isoxasole-4-propionate (AMPA)/quisqualate (QUIS) and the kainate subtypes (for reviews, see refs 1, 2). They also activate the additional QUIS 'metabotropic' receptor (sensitive to trans-1-amino-cyclopentyl-1,3-dicarboxylate, ACPD) linked to inositol phospholipid metabolism. We have used hippocampal slice cultures to study the electrophysiological consequences of the metabotropic response. We find that activation of an ACPD-sensitive QUIS receptor produces a 'slow' excitation of CA3 pyramidal cells, resulting from depression of a Ca2(+)-dependent K+ current and a voltage-gated K+ current. Combined voltage-clamp and microfluorometric recordings show that, although these receptors can trigger an increase in intracellular Ca2+ concentration, suppression of K+ currents is independent of changes in intracellular Ca2+. These effects closely resemble those induced by activating muscarinic acetylcholine receptors in the same neurons and suggest that excitatory amino acids not only act as fast ionotropic transmitters but also as slow neuromodulatory transmitters.  相似文献   

13.
用电化学循环伏安法和非现场红外反射吸收光谱方法研究了1mol/L NaOH,1mol/L NaOH+0.01 mol/L K_4Fe(CN)_6+0.01mol/L K_3Fe(CN)_6和1mol/L NaNO_3+0.01mol/L K_4Fe(CN)_6+0.01mol/L K_3Fe(CN)_6介质中Cu电极的电化学性能及表面钝化膜的结构。  相似文献   

14.
E Carbone  H D Lux 《Nature》1984,310(5977):501-502
Calcium channels in excitable membranes are essential for many cellular functions. Recent analyses of the burst-firing mode of some vertebrate neurones suggest that changes in their functional state are controlled by a Ca conductance that is largely inactivated at resting membrane potentials (-50 to -60 mV), but becomes activated following a conditioning hyperpolarization of the cell membrane. Here, using chick and rat sensory neurones, we present evidence for a new type of Ca channel with time- and voltage-dependent properties which is probably responsible for the inactivation behaviour of the Ca conductance. At membrane potentials between -50 and +10 mV, openings of this channel last 3-6 ms and tend to occur in rapid succession. Inactivation of this channel is indicated by prolonged and eventually complete closures brought about by long-lasting depolarizing voltage steps. This channel coexists in isolated membrane patches with the more common Ca channel which is less sensitive to changes in holding potential and shows a considerably shorter average life time and smaller currents.  相似文献   

15.
测定了室温下(20±1℃),H_2SO_4水溶液中I~-及I_2分别在F~-、C1~-、Br~-存在时,在Pt电极上的循环伏安图.I~-C1~-及I~-Br~-体系在0.2—1.0V(vs.SCE)范围内,都有两对基本可逆的氧化还原峰.第一对氧化还原峰的位置和峰高不随C1~-或Br~-.的浓度而变化,对应于反应:2I~-(?)I_2+2e;第二对氧化还原峰的位置随Cl~-或Br~-的浓度增加而负移,但峰高不变,浓度增大10倍,峰电势分别负移88±2mV和113±2mV,与由I_2-C1~-及I_2-Br~-体系在0.6-1.0V范围内得到的规律一致,对应的反应分别为I_2C1+3C1~-(?)2C1_2+2e和I_2+4Br_-(?)2IBr_2-+2e.F~-在该电势范围内不参与反应.  相似文献   

16.
通过阳极化处理玻碳电极,吸附法制备H3PMo12O40修饰电极,研究H3PMo12O40修饰电极在不同支持电解质、扫描速度下对酪氨酸酶的电化学传感。结果表明:以0.1 mol/L H2SO4为支持电解质效果最佳,超纯水效果最差,并且该电化学反应属于表面与扩散的共同控制过程;在温和条件下,V(0.1 mol/L H2SO4)∶V(0.5 mol/L Na2SO4)=2∶8混合溶液作为支持电解质,该多酸修饰电极在100 mV/s扫描速度下对酪氨酸酶具有良好的催化作用,氧化还原峰明显,检出限(S/N=3)达15.76 U/mL。  相似文献   

17.
In excitable cells, voltage-gated sodium (Na(V)) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance. Inactivation is a hallmark of Na(V) channel function and is critical for control of membrane excitability, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type Na(V)Ab channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2?? resolution. Compared to previous structures of Na(V)Ab channels with cysteine mutations in the pore-lining S6 helices (ref. 4), the S6 helices and the intracellular activation gate have undergone significant rearrangements: one pair of S6 helices has collapsed towards the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type Na(V)Ab models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues that are analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains have also shifted around the perimeter of the pore module in wild-type Na(V)Ab, compared to the mutant channel, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in Na(V) channel gating and inactivation. These potential inactivated-state structures provide new insights into Na(V) channel gating and novel avenues to drug development and therapy for a range of debilitating Na(V) channelopathies.  相似文献   

18.
Sphingosine-1-phosphate (S1P) is a widely expressed biologically active sphingolipid that plays an important role in cell differentiation, migration, proliferation, metabolism and apoptosis. S1P activates various signaling pathways, some of which evoke Ca2+ signals in the cytosol. Few studies have focused on the mechanism by which S1P evokes Ca2+ signals in neurons. Here, we show that S1P evokes global Ca2+ signals in SH-SY5Y cells and hippocampal neurons. Removal of extracellular calcium largely abolished the S1P-induced increase in intracellular Ca2+, suggesting that the influx of extracellular Ca2+ is the major contributor to this process. Moreover, we found that S1P-induced Ca2+ mobilization is independent of G protein-coupled S1P receptors. The TRPC6 inhibitor SAR7334 suppressed S1P-induced calcium signals, indicating that the TRPC6 channel acts as the downstream effector of S1P. Using patch-clamp recording, we showed that S1P activates TRPC6 currents. Two Src tyrosine kinase inhibitors, Src-I1 and PP2, dramatically inhibited the activation of TRPC6 by S1P. Taken together, our data suggest that S1P activates TRPC6 channels in a Src-dependent way to induce Ca2+ mobilization in SH-SY5Y cells and hippocampal neurons.  相似文献   

19.
E Y Isacoff  Y N Jan  L Y Jan 《Nature》1991,353(6339):86-90
Inactivation of ion channels is important in the control of membrane excitability. For example, delayed-rectifier K+ channels, which regulate action potential repolarization, are inactivated only slowly, whereas A-type K+ channels, which affect action potential duration and firing frequency, have both fast and slow inactivation. Fast inactivation of Na+ and K+ channels may result from the blocking of the permeation pathway by a positively charged cytoplasmic gate such as the one encoded by the first 20 amino acids of the Shaker B (ShB) K+ channel. We report here that mutation of five highly conserved residues between the proposed membrane-spanning segments S4 and S5 (also termed H4) of ShB affects the stability of the inactivated state and alters channel conductance. One such mutation stabilizes the inactivated state of ShB as well as the inactivated state induced in the delayed-rectifier type K+ channel drk1 by the cytoplasmic application of the ShB N-terminal peptide. The S4-S5 loop, therefore, probably forms part of a receptor for the inactivation gate and lies near the channel's permeation pathway.  相似文献   

20.
聚亮甲酚蓝修饰碳纤维微电极及催化性能研究   总被引:1,自引:0,他引:1  
用循环伏安法研究了亮甲酚蓝在活化的碳纤维微电极上电聚合成膜的方法和条件,并对该聚合膜修饰电极的电化学性质进行了探讨.该膜修饰的电极对多巴胺和维生素C有较强的催化作用,催化峰电流与底物浓度在一定范围内呈线性关系.并且,在一定的条件下,该膜修饰电极能有效消除多巴胺和维生素C的相互干扰,使多巴胺和维生素C的催化峰电位差达250mV,可用于多巴胺和维生素C的同时测定.用这种微电极对注射液中的多巴胺进行测定,回收率为96.7%~101.3%.该检测过程无需除氧,可望用于活体分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号