首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
微纳米尺度物质与光的相互作用研究对于光电转换、生物传感等领域的发展具有重要的科学意义.基于等离激元效应和介质光耦合机理增强光和物质相互作用的微纳光学研究涌现出众多优秀科研成果,在分子传感领域更是展现出巨大的应用潜力.本文重点围绕本课题组近年来在等离激元/介质微纳结构与光的互作用方面的相关理论与实验研究展开回顾分析,揭示了采用不同电磁机制增强光与微观物质相互作用的物理内涵,论述了微纳结构光学设计的新思路和新方法,阐明了在微纳光学分子传感应用上的科研思想和探索成果.最后,展望了微纳光传感的研究发展方向和实际应用前景.  相似文献   

2.
由于对电磁场巨大的局域化共振增强和调控作用,表面等离激元自发现之初就成为微纳光学领域的研究热点之一,在很多纳米尺度器件应用方面颇具潜力.然而,长期以来表面等离激元的实际应用受到样品制备技术的显著限制,超平整、低损耗贵金属薄膜的低成本制备技术的缺乏不仅阻碍了其实验研究的进展,更限制了表面等离激元材料在多个领域内的应用发展.随着各项制备和表征技术的发展,贵金属薄膜的平整度和光学特性逐渐从理论期望走向实际使用,从随机制备后选取逐步变为精确调控的薄膜生长.本文从制备、表征和应用三个方面出发,系统地介绍了当前贵金属超平整表面等离激元薄膜的研究进展与前沿应用.  相似文献   

3.
过渡金属二硫化物(Transition Metal Dichalcogenides, TMDs)以其优异的光电子学特性,在诸如光捕获、光电探测、光电晶体管、发光二极管以及纳米激光器等领域中展现出了强大的应用潜力,成为当前研究前沿热点之一.少层TMDs材料的带隙处于可见和近红外区间,其激子在室温下具有很大的束缚能、高谐振子强度,且单层TMDs由于空间反演对称性的破缺具有能谷选择的圆二色性等,这些特性使得TMDs材料格外引人注目.金属纳米结构的表面等离激元具有亚波长的光局域特性,可通过合理的结构设计实现对其共振波长、频谱宽度、近场增强倍数、远场辐射特性的灵活控制.将等离激元光学结构和过渡金属二硫化物相结合可大幅拓宽纳米光子学前沿基础问题研究与纳米光电器件的设计应用.本文综述了表面等离激元和TMDs材料复合体系的最新研究进展,着重阐述了为何这类复合体系能够提供他们各自体系所不能具有的特性.比如,表面等离激元的近场增强(场局域)效应可极大增强许多纳米光学系统中的光与物质相互作用强度,可用于对TMDs材料的光吸收、光发射、光电流以及非线性光学等过程进行调制. TMDs材料具备的受外界环境调控的强激子效应和能谷选择的圆二色性等特性,可为表面等离激元纳米结构提供丰富的主动调制手段与能谷自由度.最后展望了该新型复合体系未来的研究方向和机遇.  相似文献   

4.
当前的等离激元传感主要基于表面等离极化激元和局域表面等离激元共振两种模式.然而基于表面等离极化激元的传感需要精确的入射角度及多种光学元器件的配合方能使用;而基于局域表面等离激元共振的传感由于共振线宽较宽导致其灵敏度和品质因数(figure of merit,FOM)不够高.设计了一种基于纳米颗粒/间隔层/反射层结构的具有超高灵敏度和FOM的折射率传感器.由于表面等离激元晶格模式与局域表面等离激元共振以及法布里-珀罗干涉的相互作用,器件的反射光谱具有一个超窄反射峰.利用这个反射峰实现传感,其灵敏度达到500 nm/RIU,FOM达到625.进一步分析表明,此传感器在不同结构与激发参数下都具有很好的传感灵敏度.该研究结果对高灵敏等离激元传感器设计具有重要参考意义.  相似文献   

5.
手性普遍存在于自然界中,分子的手性直接决定了其物理和化学性质.分子手性的有效探测和表征对制药、化工、生物工程等领域的发展至关重要.现有的手性探测手段普遍具有信号小、抗噪声能力弱的缺点.如何实现快速敏感的分子手性探测是一个重要的问题.表面增强的光谱探测技术可以利用合理设计的微纳结构实现强的局域电磁场,进而增强分子与光的手性相互作用,从而有效提高手性分子检测灵敏度.近些年,人们在这方面进行了很多研究,在圆二色谱(CD谱)、振动圆二色谱(VCD谱)以及拉曼光活性谱(ROA谱)增强方面取得了一系列研究成果.本文主要从金属和介电微纳结构两方面介绍了表面增强的CD谱、VCD谱、ROA谱探测技术.金属微纳结构可以产生局域等离激元共振,在其微纳结构附近诱导出超手征场,从而增强手性分子与金属微纳结构表面近场的相互作用,提高分子手性检测的灵敏度.而介电材料不仅支持电多极共振,同时还支持磁多极共振,使得其结构表面可以产生符号均匀的超手征场,十分有利于分子手性的探测.此外,介电结构在进行手性检测时产生的热量更小,在手性增强方面有非常重要的应用.表面增强的光谱探测技术在分子手性信号增强方面的优越表现,有望实现手性分子的超敏检测,从而解决现有手性检测方面的难题.  相似文献   

6.
红外吸收光谱是探测和鉴定分子的有效工具,然而其应用受到分子低红外吸收截面的限制.金属或高掺杂半导体纳米材料的局域表面等离激元能够产生极大的局域电磁场增强.当分子红外振动与局域表面等离激元发生耦合共振时,分子的振动信号会被极大增强,可实现对目标分子的微量甚至痕量检测.由于其在化学、生物和医药等方面的巨大应用前景,近年来局域表面等离激元增强红外吸收引起了人们的广泛关注.本文首先介绍了表面等离激元增强红外吸收效应的产生机理和理论模型,在此基础上重点讨论了几类不同结构和组分的可实现表面等离激元增强红外吸收的纳米材料的制备方法和增强效果,最后总结了该效应在光谱成像、生物分子检测、环境污染物监测和气体检测等诸多方面的重要应用.  相似文献   

7.
等离激元纳米结构能够把光场局域到非常小的空间,而应用在表面增强光谱、生物传感和太阳能电池等领域.我们设计了一种对光场具有高局域和强吸收特性的基于金-介质-金三明治结构的圆柱体微腔结构.计算结果显示:该圆柱微腔能够局域入射光的绝大部分能量,产生强的平均电磁场能量密度.微腔内的平均电磁场能量密度增强因子G达到10~3~10~4数量级,而且G值随着介质层的厚度、介电常数和圆饼半径的变化呈现出了一定的变化规律.在正入射波的条件下,经计算得到了4.8μm~6μm范围的反射光谱和吸收率C(C=1-R_(min)),通过优化介电常数和结构的几何参数,C值达到99%.  相似文献   

8.
当一束光照射在物质上,光子与物质发生动量交换,部分动量转移到物质,等效于对物质产生作用力,称为光学力.这一作用力非常弱,一般在pN甚至更小的量级,但一定条件下,仍足以捕获和操纵纳米、微米尺度的物体.在金属纳米结构中,由于表面等离激元共振效应,诱导的局域电场可以产生增强的光学力,可以在亚波长尺度实现光操纵,并且由此衍生出一个极具吸引力的研究方向——表面等离激元光学力.本文介绍了利用金属纳米结构进行表面等离激元光学力操纵的最新研究进展.  相似文献   

9.
从理论上研究了圆柱形金纳米线中, 可见光波长下(λ= 632. 8 nm) 表面等离激元模式的传输性质。通过求解麦克斯韦方程组, 得到圆柱形金纳米线中表面等离激元波导的传播常数, 进而得到表面等离激元模式的传输性质, 包括其传播长度及有效半径等。还发现了表面等离激元模式的传输性质受到模式结构以及介质介电常数的影响, 并且得到了表面等离激元传输距离和能量局域之间的普遍矛盾, 即能量局域越好传播距离越短。通过计算, 能够在特定的结构参数下获得较好的局域特性和传播长度, 例如, 当金属芯半径为 40 nm, 介质( SiO2 ) 厚度为 40 nm时, HE11 模式的传播长度为 103. 6 μm, 有效半径 642nm。  相似文献   

10.
表面等离激元可以突破衍射极限,具有强局域性,在传感、起偏、吸收、分束等方面具有广泛的应用前景.目前,太赫兹波段的表面等离激元器件研究大多是在远场光谱方面,其近场特性的研究有待更进一步深入.本文基于石墨烯微米带结构,研究了太赫兹表面等离激元的激发及场分布特性.本文设计了能够通过太赫兹波激发表面等离激元的石墨烯微米带结构,数值计算了其表面等离激元的场分布,并制备了石墨烯微米带器件,利用透射式太赫兹近场显微镜激发并测量了石墨烯微米带的表面等离激元,对共振失谐对等离激元场分布的影响进行了探究.研究结果为石墨烯表面等离激元器件在太赫兹生物传感、安全检测、高数据率通信等方面的应用提供了相关指导.  相似文献   

11.
随着第六代通信技术(6G)、空间态势感知等系统对高通量、高带宽要求的进一步提高,太赫兹技术成为国际学术界和工业界的研究热点。2022年,太赫兹人工表面等离激元研究在国际上受到很大的关注,盘点了该领域的关键热点与新进展,包括基于太赫兹人工表面等离激元的无源器件、有源器件、传感器、通信系统以及生物医药应用等。人工表面等离激元对传输的电磁波具有亚波长的电场束缚能力和非线性色散特性,为太赫兹功能器件和系统应用的实现带来了新机遇。  相似文献   

12.
人工表面等离激元是一种十分重要的亚波长电磁模式,基于这种波长较短的新型电磁模式,可开发薄层化、轻量化、小型化的新型电磁材料与器件,在航空、航天、通信、隐身等领域具有十分重要及广阔的应用前 景。本专题依托国家重点研发计划“高端功能与智能材料”“超材料加工制造关键技术与典型应用”、国家自然 科学基金“基于人工表面等离激元色散调控的天线 天线罩一体化隐身设计研究”等项目设立,聚焦国内人工表面等离激元的最新研究动态,汇集国内优秀团队研究成果,以期增进国内人工表面等离激元研究领域的学术交流和应用技术探讨,促进人工表面等离激元基础研究和技术创新应用的发展。本期专题采用增强出版形式,读者可扫描以下二维码查看相关支撑材料,以加深对论文内容、思路与方法的理解。  相似文献   

13.
基于利用磁控溅射方法制备的纳米银颗粒,研究了纳米银颗粒局域表面等离激元对介质环境的敏感程度,作为媒介提高光与物质相互作用的可能性.研究结果表明:传感灵敏度最大可达到约931 nm/RIU,石墨烯拉曼信号可提高约40倍,可见光吸收提高约10倍.该研究表明制备简单、光学响应灵敏的纳米银颗粒在传感、光电探测及分子识别等领域具有潜在的应用价值.  相似文献   

14.
为实现量子阱红外光探测器件对垂直于阱结构的入射光吸收,减小模式体积,降低暗电流,提高比探测率D*,提高红外光探测器件性能,以10.55 μm长波红外光为例,利用等离激元微腔与量子阱材料结合,形成F-P共振,增加GaAs/AlGaAs量子阱层的吸收率和器件的响应率。设计了平面漏斗形等离激元微腔集成的量子阱红外探测器(quantum well infrared photodetector,QWIP),使用基于有限元数值仿真方法对其进行分析。结果表明:平面漏斗形等离激元微腔集成的QWIP具有较小的光子模式体积和较高的局域场强,光吸收率维持在81%~89%的情况下,可以使探测材料体积减小38%~50%,获得的D*比一般等离激元微腔集成的QWIP增大10%~15%。  相似文献   

15.
固态染料敏化二氧化钛纳晶薄膜太阳能电池的研究进展   总被引:4,自引:1,他引:4  
固态染料敏化太阳能电池是目前能源研究的热点领域之一。我们设计并合成了一系列含有不同特性基团(如柔软的高分子链、可现场固化基团和高电导的离子液体基团)的高分子固态电解液应用于染料敏化太阳能电池;同时,结合理论模拟计算得出的二氧化钛纳晶薄膜工作电极和对电极的光散射效应与光限域效应能提高电池的光吸收效率,二氧化钛纳晶薄膜孔隙率的增大能增加固态电解液在膜内的渗透和扩散,对工作电极和对电极进行结构优化可得到高光电转换效率的固态染料敏化太阳能电池。  相似文献   

16.
起源于金属中自由电子集体振荡的表面等离激元,具有超小的光学模式体积和亚波长局域的近场增益,为纳米尺度上研究光和物质相互作用带来新的机遇.共振的纳米金属结构的近场区域,具有各向异性的珀塞尔系数,并且可以为量子体系提供近场激发.我们理论上演示了基于表面等离激元结构的单分子共振荧光、原子布居数的本征量子拍频及其在表面等离激元结构中的纳米尺度上的实现、表面等离激元诱导的各向异性珀塞尔系数导致的亚波长尺度自发辐射谱线的变化.这些结果在超紧凑的有源量子器件中有潜在应用.  相似文献   

17.
镧系离子掺杂的纳米材料上转换发光(upconversion luminescence, UCL)具有广泛的应用前景.但由于UCL过程涉及受激镧系离子在多能级间的多步跃迁和多通道光子发射,发光效率一般较低.近年来,本课题组围绕微腔谐振模式调控镧系掺杂纳米晶颗粒的多色UCL进行研究,实现了高对比度的单色发光及其发光强度的极大增强.所采用的微腔结构包括基于金属薄膜或分布式布拉格反射镜的Fabry-Perot微谐振腔、帽型金属微腔、基于等离激元金属光栅结构的分布反馈式谐振腔,以及基于微晶颗粒的回音壁微腔.相关研究表明,这些微腔结构中的谐振模式对镧系掺杂纳米晶颗粒UCL的调控和增强作用不仅体现在其对发射光的Purcell效应和对激发光的局域场增强效应上,而且还体现在对镧系离子内部多能级间的多步跃迁的反馈式调控上.本文将在对上述工作介绍的基础上,对纳米晶UCL的谐振调控规律进行梳理,并对相关工作做进一步的展望.  相似文献   

18.
研究光与物质相互作用是腔量子电动力学的一个重要方向.早在20世纪50年代,黄昆先生就提出了固体环境中的光子与晶格连续作用的时间演化图像,并指出光子-声子时间上连续不断的相互转化会在物质中形成声子极化激元波,从理论上计算了声子极化激元波的色散关系.Hopfield把这种图像推广到半导体环境中的光子-激子作用上.随后人们在微腔中实现了单原子、单量子点激子的真空拉比振荡.随着半导体微腔生长和微纳加工工艺的提高,激子极化激元的凝聚、超流、涡旋等宏观量子态被实验证明.通过控制微腔结构和光场调控的手段,人们进一步实现了对宏观量子态的相干调控.有机半导体、钙钛矿、二维半导体等新材料体系展现了极大的激子束缚能,有望实现室温量子器件的制备.微腔激子极化激元的研究进入了黄金时代.本文首先从激子极化激元的基本图像入手,详细介绍激子极化激元的概念、色散关系以及常见的激子极化激元体系.其次,总结了研究微腔激子极化激元的材料体系和实验方法,详细介绍了平板微腔和微纳材料自构型微腔的工作原理和具体实例,以及共焦显微荧光光谱和角分辨荧光光谱.第三,对激子极化激元的量子调控进行了总结.详细介绍了激子极化激元的重要宏观量子态以及通过微纳加工和光场调控的方式对宏观量子态的操控.具体分析了两个量子态操控的实例,包括氧化锌超晶格中多重量子态的制备以及凝聚体的参量散射过程.第四,对新型材料中激子极化激元的研究进行了总结,包括二维半导体、有机半导体和钙钛矿.最后,对本文进行总结,并且从理论、实验的角度分别预测了该领域的发展趋势.  相似文献   

19.
采用离散偶极近似方法(DDA)计算了在不同偏振方向的入射光激励下,H型金纳米结构在水介质环境中的共振吸收光谱及近区电磁场分布;在此基础上,利用付里叶热传导定律数值模拟了该结构产生的热效应。结果表明:该金属纳米结构在近红外波段存在两个主要等离激元共振模式,在单一波长的共振光激励下,改变入射光的偏振方向可调节吸收峰值大小;同时,也可以有效地调节结构的近场电磁场耦合作用,在结构周围形成高度限定的局域热增强现象,在较大的温差范围内调控该结构及其周围介质环境的局域温度。  相似文献   

20.
表面热功能结构广泛应用于热能转换与传递的各个环节,是机械与工程热物理交叉领域重要的研究方向。从加工学的角度综述了表面热功能结构的微纳发展现状和趋势。分析表明,对表面微纳结构的规则性、水热稳定性、固液界面特性的有效控制是提升传热性能的关键,也是表面微纳热功能结构加工领域的挑战。介绍了基于脱合金技术的表面纳米多孔金属结构原位成形方法及其在强化沸腾传热领域的应用现状和前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号