首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了揭示掺杂对Al(111)面O2吸附性能影响规律。采用基于密度泛函理论(Density Functional Theory, DFT)的第一性原理计算方法,通过构建模型以及设置计算参数,计算得到了不同O原子覆盖度下Ni、Mn、Si掺杂对应Al(111)面吸附O2的吸附能、功函、Bader电荷、差分电荷密度、以及态密度。研究表明:当氧原子覆盖度较低情况下,纯铝表面吸附能绝对值最大,转移电子数最多,原子之间存在相互作用并主要由最外层电子轨道决定。当氧原子覆盖度增大至3/8时,掺杂表面吸附能大于纯铝表面,掺杂促进了Al(111)面吸附氧分子。结果表明:Al(111)面吸附氧分子的能力不仅与掺杂元素有关,还与各表面O原子的覆盖度有关,当O原子覆盖度较低时,Mn、Si、Ni掺杂抑制了O2吸附,当覆盖度较高时,Ni、Mn、Si掺杂促进了O2吸附。  相似文献   

2.
采用DFT/B3LYP方法对Ni在TiO2(110)表面的5种可能负载模式及CO的6种吸附模型进行优化,计算了它们的吸附能、振动频率.结果表明,Ni倾向以垂直于O(2f)的形式负载在TiO2(110)表面,CO以C端与2个Ni原子桥连的方式吸附在Ni/TiO2(110)面时有利于C-O键的断裂.通过态密度分析发现,Ni/TiO2(110)体系是由Ni3dyz和3dxz组成的表面态,正是该表面态提高了完整TiO2(110)面对CO催化分解活性.计算结果与实验一致.  相似文献   

3.
用密度泛函DFT方法对NiCO,Ni2CO(A)和Ni2CO(B)单配位络合物进行量子化学的计算.对CO在Ni金属催化剂上可能的吸附模式以及C≡O叁键活化的微观机理进行分析.发现CO在镍上有两种吸附方式:立式顶位吸附和卧式吸附;CO的活化程度与吸附方式密切相关,卧式吸附有利于CO活化.  相似文献   

4.
用SCC-DV-X_α(Selt-Consistent-Charge-Decrete Variational-X_α)方法计算CO 吸附在Pd(100)表面的电子能级、态密度、前沿轨道等.结果表明,钯原子簇的桥位对CO有较好的催化活性;CO与Pd原子的配位键含有Pd原子的d、p轨道成份;吸附后的CO 5σ与1π能级间隔大大缩小,在态密度图上出现的对应于CO的5σ+1π与4σ二个吸附峰的位置和计算值,与UPS所观察到的二个CO吸附峰的位置和测量值相吻合。  相似文献   

5.
本文利用装备有程序控温反应池、抽空和质谱检测脱附物系统的FT—IR,在室温条件下研究了CO在Rh/SiO_2催化剂上的化学吸附态及其与O_2、NO、H_2的反应性能。实验站果表明:CO在Rh/SiO_2催化剂上存在着Rh(CO)_2[Ⅰ]、Rh(CO)[Ⅱ]和Rh_2(CO)[Ⅲ]三种化学吸附态;它们与O_2及H_2的反应活性顺序是[Ⅰ]>[Ⅱ](?)[Ⅲ];NO能从催化剂表面上置换CO吸附态[Ⅱ],並相应在此吸附位上产生两种吸附态Rh(NO)及RhO_2(NO);通过对CO和H_2共吸附、吸附的CO和H_2反应及H_2CO吸附的化学吸附态的检测及其脱附产物的质谱分析,说明了在Rh/SiO_2催化剂上CO和H_2反应过程中无H_2CO中间物产生。  相似文献   

6.
采用密度泛函理论,在电子水平上研究了NiMn双金属与MgO载体间的相互作用以及这种相互作用对H原子吸附和H_2解离的影响,并把所得结果与Ni/MgO上相应的结果作比较。研究过程中分别采用完美的和有缺陷的MgO载体负载Ni_2Mn_2簇,构建了两种催化剂模型。结果表明,表面有缺陷的MgO与活性组分Ni_2Mn_2间的相互作用大于完美面MgO与活性组分间的相互作用,H原子在有缺陷的MgO负载的Ni_2Mn_2催化剂上的吸附能大于完美面MgO负载的Ni_2Mn_2催化剂上的吸附能,并且有缺陷的MgO负载的Ni_2Mn_2催化剂更有利于H_2解离;与Ni4负载的MgO上金属与载体间相互作用相比较,添加第二种金属Mn会使活性组分与MgO载体间的相互作用减弱,吸附H原子的能力增强,但是不利于H_2解离。此结果为通过加入第二种金属或改变载体来调变金属-载体间相互作用进而改变催化剂性能的实验研究提供了理论线索。  相似文献   

7.
运用基于密度泛函理论第一性原理的投影扩充波函数(PAW)方法,计算了化学计量Ni2MnAl的晶体结构、磁性、电子结构、压力响应以及柔和四方变形.结果表明:在Ni2MnAl的总磁矩中,Mn原子对总磁矩的贡献最大;在Ni2MnAl的总态密度中,低能部分主要由Al-s的投影态密度决定,高能部分主要由Ni-d,Mn-d和Al-p的投影态密度决定;Ni和Mn原子间存在较强的键合,Al的p态和Mn的d态存在与自旋相关的杂化;在Ni2MnAl的四方变形中,0.95c/a1.10内存在一个变化平缓的能量面.  相似文献   

8.
采用广义梯度近似密度泛函理论方法(GGA/PW91),结合周期平板模型,研究了甲烷在Ni(110)面不同位置的吸附行为,找到最稳定的吸附方式,并对其稳定结构进行电荷和态密度分析.结果表明:甲烷在Ni(110)面24种吸附方式中,顶位T4的吸附能(4.59kJ/mol)最大,是最稳定的吸附方式,且为物理吸附;从C-H键长和CH4吸附前后的振动频率分析可知,C-H1或C-H4键易断裂;通过Mulliken电荷布居的分析可知,相对于吸附前,吸附后电子从被吸附物Ni的4s、4p轨道以及吸附物中C的2s、2p轨道转移给吸附物中H1或H4的1s轨道;能带结构和态密度分析表明,在-10~-5eV的能带区间出现了新峰,该能带由C的2p轨道、H的1s轨道以及Ni的4s、4p轨道构成,说明CH4在Ni(110)晶面吸附有相互作用.  相似文献   

9.
运用SCC—DV—X_α方法计算了Ni/SiO_2、Ru/SiO_2,Rh/SiO_2,Pd/SiO_2催化剂模型的电子结构。从催化剂模型的前线轨道的组成的比较中看到,Pd/SiO_2的HOMO 中d 轨道成份陡然下降,说明其反馈到CO 的2π~*上的d 电子密度锐减,所以不能使CO 解离,进而可以说明Pd/SiO_2上CO 加H_2生成CH_3OH 的机理。本文认为LUMO 中的d~((2))成份在—CH_2插入(链增长)中起重要作用,由Ni/SiO_2中几乎无d~((2))成份可以说明Ni/SiO_2中只生成CH_4而无长链烃生成的原因。  相似文献   

10.
为探究Mn(Ⅱ)在伊利石表面的吸附机理,采用密度泛函理论(DFT)模拟Mn(Ⅱ)在伊利石(001)面和(010)面的吸附,研究了活性位、吸附构型、电荷和态密度。结果表明:在(001)面,Mn(Ⅱ)优先吸附于硅氧环空穴处,且与活性氧OS1形成1个共价键,吸附能为-262.55 kJ/mol;在(010)面,Mn(Ⅱ)与羟基基团的氧原子形成1~3个共价键,随着共价键数量的增加,吸附能增大,吸附的最稳定构型为Mn(Ⅱ)吸附于3个≡Al—OH基团之间的空穴处,吸附能为-533.62 kJ/mol;Mn(Ⅱ)与(001)面和(010)面均存在共价键作用和静电作用,在(001)面的吸附能小于(010)面,且与(001)面以静电作用为主,与(010)面以共价键作用为主;Mn(Ⅱ)与伊利石表面共价键的形成主要是Mn(Ⅱ)的4s轨道与表面OS的2p轨道间的相互作用。研究结果可为黏土吸附材料的开发和污染土壤的净化提供理论基础。  相似文献   

11.
以Ni(NO3)2·6H2O为活性金属前驱物,采用过量浸渍法制备了Ni/HZSM-5、Ni/HY、Ni/Al_2O_3、Ni/TS-1、Ni/ZrO_2和Ni/CeO_2催化剂,Ni的质量分数由TPR结果计算可得分别为9.2%、9.1%、9.2%、9.5%、9.2%、9.3%.考察了催化剂对苯酚加氢反应的活性和产物选择性的影响.采用X射线衍射、N_2吸附、NH_3程序升温脱附、H_2程序升温脱附等手段对催化剂进行了表征.结果表明,载体的孔结构、酸度的强弱和酸中心数量与苯酚加氢活性具有紧密联系.在反应温度493 K,氢气压力5 MPa下反应180 min,Ni/Al_2O_3具有最高的苯酚转化率,达到85.63%,产物中环己酮选择性最高,达到79.2%;Ni/HZSM-5也有较高的苯酚转化率,而此时产物中环己烷的选择性最高,达到93.9%.  相似文献   

12.
采用密度泛函理论,在Slab模型下,研究了CO_2在Ni_5Ga_3合金(010)面上的吸附确定了CO_2在Ni_5Ga_3(010)面上的吸附位点、吸附构型和吸附能,并对吸附成因进行了仔细分析.计算结果表明,CO_2在富Ni面上的吸附较贫Ni面上稳定,η~2-CO*结构是CO_2的优势吸附构型.电子结构分析结果显示,CO_2的4σ_g,3σ_u,1π_g,2π_u轨道与表面Ni原子d_(xz)和d_z~2轨道之间的相互作用是CO_2能够稳定吸附于表面的主要因素.  相似文献   

13.
用XPS和UPS法研究金属Mn、Mg表面与CH_3OH、C_2H_5OH的反应,室温下,ROH(R=CH_3,C_2H_5)以RO~-的形态吸附在Mg表面,Mn表面有较高的活性,ROH除以RO~-的形态被吸附外,部分还分解为O~(2-)和脱附的碳氢化合物,加热至600K时,Mn表面RO~-完全分解为O~(2-)和R,后者与表面氢结合后脱附,部分C_2H_5O~-中的碳成无定形碳并在~675K加氢脱附,ROH在氧化锰表面除以RO~-的形态被吸附外,在高于650K时还产生CH_2O_(a)、C_2H_4O_(a)等,这些物种在700K依然存在,氧化使锰表面断裂R—O和C—C键的活性降低而其脱氢活性仍然存在。  相似文献   

14.
运用MaterialsStudio6.0程序CASRTEP软件包建立L21型Ni2MnGe单胞和1×1×5的Ni2.25Mn0.75Ge超胞模型,采用GGA-PBE-TS近似,得出能带结构和态密度曲线。由Ni2MnGe单胞的能带结构和态密度图可以看出自旋向上和自旋向下的能带都没有出现带隙,说明Ni2MnGe单胞具有金属性,在费米能级附近不同自旋能带具有明显差别,从而导致Ni2MnGe具有较大磁性;通过分析1×1×5的Ni2.25Mn0.75Ge超胞的能带结构和态密度图可以得到同样的结论,即Ni2.25Mn0.75Ge具有金属性,在费米能级附近不同自旋能带具有明显差别,从而导致Ni2MnGe具有较大磁性。2种晶体中Ni原子自旋向上和自旋向下的态密度占据量几乎相同,因此Ni原子的磁矩很小,而Mn原子d轨道的电子几乎全部局域在自旋向上的态密度中,因此Mn原子磁矩较大。Ni2.25Mn0.75Ge中Ni(A)与Mn存在p-d杂化,比Ni2MnGe中p-d杂化作用更强,这是由于Ni替换了Mn的缘故。  相似文献   

15.
用密度泛函DFT方法对NiCO,Ni2CO(A)和Ni2CO(B)单配位络合物进行量子化学的计算.对CO在Ni金属催化剂上可能的吸附模式以及C≡O叁键活化的微观机理进行分析.发现CO在镍上有两种吸附方式:立式顶位吸附和卧式吸附;CO的活化程度与吸附方式密切相关,卧式吸附有利于CO活化.  相似文献   

16.
利用基于密度泛函理论的第一原理赝势法,研究了Ni2MnIn合金Heusler结构和四方马氏体结构的晶体结构参数、电子结构及微观磁性特征.通过对能带、各原子轨道磁矩和分波态密度(PDOS)的计算分析,发现二种结构中各原子的原子轨道磁矩、元胞轨道磁矩、元胞体积均变化不明显,两相均具有明显自旋极化现象.计算表明:四方马氏体相变导致Ni2MnIn元胞费米能下降0.495eV;Ni2MnIn结构中,In原子具有弱抗磁性,晶胞磁矩为Mn原子轨道磁矩所主导,约占元胞总轨道磁矩85%,Ni原子轨道磁矩贡献约占元胞总轨道磁矩15%.理论计算结果与其他理论值进行了对比.  相似文献   

17.
本文研究了CO、H_2S和C_4H_4S在Ni/γ-Al_2O_3上的化学吸附过程。实验证明,用CO在-72℃的化学吸附测定催化剂的金属表面积,是一个可行的方法。CO不吸附在被毒物掩盖的表面上。S复盖度在0.4以下,毒物S对CO在未复盖的镍表面上的吸附没有影响;复盖度超过0.4.随着复盖度增加,S明显地阻碍CO的吸附。10Vpm~(?)H_2S在H_2中的混合气体,在300—500℃下,经过约20小时的化学吸附,形成饱和吸附层,S与表面Ni原子比例为0.53,0.1%(V/V)C_4H_4S在H_2中的混合气体,在20℃经过约20小时的吸附,形成饱和吸附层。表面Ni原子与C_4H_4S分子比例为4.95。噻吩以非解离方式占据着4.95个表面Ni中心。中毒催化剂在600℃,H_2气流下经过约50小时,可以完全再生。  相似文献   

18.
采用密度泛函方法,对H2在Mg(0001)及掺杂一系列的过渡金属的Mg表面的吸附行为进行了研究.结果表明,H2在Mg(0001),Fe,Co,Cu和Zn掺杂的Mg表面只存在物理吸附;在Sc,Ti,V,Cr,Mn和Ni掺杂的Mg表面时物理吸附和化学吸附都存在.H2在M(Sc~Zn)掺杂Mg表面解离的能垒均低于Mg(0001)表面.解离后的H原子易化学吸附在以下3种邻近的空位:Fe掺杂Mg表面的fcc-hcp1位;Ni掺杂Mg表面的hcp-hcp位;其余掺杂Mg表面的fcc-fcc位.计算结果显示,Ti,V,Cr,Mn,Ni掺杂在Mg表面可有效改善H2的吸附与解离性能.  相似文献   

19.
分别用DV-X_α和薄膜层EHMO方法计算铁原子簇Fe_9、Fe_(15)和α-Fe(111)、(100)、(110)三个晶面的电子性质.在上述三个晶面中,(111)面表面原子的排列最为疏松,从态密度分析可知:(111)面表层d带最窄,费米能级附近总的态密度、d轨道态密度和dxz、dyz轨道的电子密度最高,有利于N_2的化学吸附与活化,从而对这三个晶面催化活性的差异作出了合理的解释.  相似文献   

20.
用CASTEP软件包中的GGA/RPBE基组,采用平面波超软赝势方法,计算了O2分子在LiH表面的最佳吸附方式为穴位垂直吸附.由吸附前后的态密度(DOS)图可知,成键主要由LiH的s、p轨道和O的2p轨道杂化而成,偶合构成σ键;成键峰重叠性较强,且峰增宽.从计算的布居数看,Li原子与吸附的O原子之间有0.24个电子转移,吸附属于离子型;其吸附能为-48.3 kJ/mol,为化学吸附.结果显示,氧气的氧化腐蚀没有形成新的氧化物Li2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号