首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
准确地预测叶片吸力面层流分离诱导转捩过程是高升力、低压涡轮气动设计的关键。应用RANS方法的γ槇-Reθt转捩模型和LES方法的WALE亚格子模型对T106C高升力低压涡轮叶栅进行计算分析;比较了两种方法在不同雷诺数工况下对分离流转捩的模拟精度。结果显示,在高雷诺数工况时,γ槇-Reθt转捩模型预测结果与试验值较为一致,而在低雷诺数工况时严重低估了分离泡尺寸,与试验结果差距较大;WALE模型在高、低两种雷诺数工况下,其时均结果与试验值均吻合较好。  相似文献   

2.
对两种基于RANS方程的转捩模型进行分析讨论,这两个模型都只需采用局部变量计算,其中SST-γ-Reθt模型基于实验经验公式,层流动能模型基于转捩现象。两个模型都被耦合到RANS低雷诺数湍流模型中,并通过不同工况下T3系列平板的数值计算对模型进行评估。结果表明转捩模型较原湍流模型需要消耗更多计算资源;相对层流动能模型,SST-γ-Reθt模型对y+更为敏感,在无压力平板算例中两个模型能够较为准确地预测转捩,只有在湍流度增大时,SST-γ-Reθt模型预测的精度才会下降;在有压力梯度情况下,两个模型预测转捩起始点都较实验值延后,当来流雷诺数较大时层流动能模型预测的转捩长度较实验值偏小;从平板上不同位置(层流区、转捩区和湍流区)湍动能的分布情况能够看出SST-γ-Reθt模型只是在数值上模拟转捩过程,并不考虑转捩内在规律,层流动能模型预测结果与实验值较为吻合。  相似文献   

3.
通过采用计算流体力学方法对不同相对厚度的椭圆翼型在低雷诺数范围下进行了数值模拟,研究了椭圆翼型在低雷诺数下的层流分离现象及流场结构.结果表明:在低雷诺数下,薄椭圆翼型在小攻角时前缘出现层流分离泡是其具有高的升力系数及升阻比的原因,随厚度的增加,前缘层流分离泡逐渐消失,在后缘形成时均小泡.随着雷诺数升高,薄椭圆翼型时均分离泡都出现在前缘,但外形缩小,而在较低雷诺数下,薄椭圆翼型小攻角时没有发生转捩再附现象;同时层流分离泡的出现也对翼型后缘分离涡的尺寸和位置产生了重要影响.相对厚度和雷诺数通过影响椭圆翼型上表面层流分离泡的尺寸、位置以及后缘分离涡的形态结构,进而改变了气动特性.  相似文献   

4.
火星超低雷诺数环境导致螺旋桨系统气动特性相比于地球环境显著恶化,翼型表面层流分离现象影响了火星螺旋桨的气动特性.为设计出适应火星低雷诺数环境的螺旋桨,深入了解超低雷诺数对翼型气动特性的作用机理,采用Transition SST转捩模型求解非定常可压缩N-S方程的数值模拟技术,对几种适用于低雷诺数环境的翼型进行火星超低雷诺数环境下气动特性模拟计算,从而选取最适应火星大气环境的翼型.结果表明CLF5605翼型具有更好的气动性能.对选定的翼型进行不同超低雷诺数下气动特性模拟计算,揭示了超低雷诺数对翼型气动特性的影响,即在火星大气雷诺数范围内,更高的雷诺数对应更好的气动性能;对雷诺数从100~20 000翼型表面边界层状态进行数值模拟,发现翼型层流分离结构发生显著变化,从低雷诺数下的层流边界层状态,随着雷诺数的增加开始发生层流分离,在翼型尾缘产生层流分离泡,并最终变成湍流边界层.采用最小能量损失的方法设计火星螺旋桨,对其气动性能进行了数值模拟仿真,并对轻量化制造的螺旋桨进行了地面台架实验验证,通过将地面实验结果与CFD数值模拟仿真结果对比,验证了螺旋桨轻量化设计合理性以及数值计算的准确性.  相似文献   

5.
本文采用Menter发展的γ-Reθ转捩/湍流模式预测平板和超临界RAE-2822翼型的转捩特性,验证了该转捩模式的有效性和可靠性,同时获得网格分布等规律.在此基础上开展某超临界翼型上表面及其前缘结冰时吸气层流控制后的转捩预测,分别获得干净和结冰外形下混合层流控制对转捩的影响规律.结果表明,合理设计的层流控制对干净翼型表面转捩推迟明显,能有效减阻;在结冰情况下,层流控制几乎失效.  相似文献   

6.
高升力多段机翼的转捩预测研究   总被引:2,自引:0,他引:2  
本文采用Menter等发展的基于局部变量的γ-Reθt湍流转捩模式对平板和NLR7301翼型开展了转捩模式验证工作,进而对带有前、后缘襟翼的多段机翼流动转捩进行了数值模拟.研究结果表明,转捩对于多段机翼的气动特性具有较大影响,数值模拟可为多段机翼中襟翼偏角、间距等设计提供有益指导.  相似文献   

7.
以NACA0012翼型为研究对象,分析在全湍和转捩两种流动状态下分布式粗糙前缘对翼型失速特性的影响规律.使用Menter切应力输运模型和γ-Reet(Reθt为转捩动量厚度雷诺数,y为间歇因子)转捩模型,并分别耦合粗糙度模型和粗糙增长因子输运方程对翼型绕流进行模拟,分析翼型失速特性变化及失速前边界层流动发展状况.结果 ...  相似文献   

8.
以高温气冷堆氦气轴流压气机叶型气动特性为研究对象,结合优化算法与现代流场模拟技术研究了氦气压气机叶型的设计特点和损失特性。数值模拟采用SST湍流模型和γ-Reθ转捩模型,考虑了氦气附面层转捩对叶型损失的影响。对比低速空气压气机叶型和CDA叶型,研究了具有低损失和宽广工作范围的氦气压气机叶片表面压力分布特点及其附面层发展特点。研究结果表明,优化叶型在保持设计工况下损失基本不变的情况,大幅度地增加了氦气叶型的低损失攻角范围,并减小了不同攻角时叶型的落后角。优化叶型在正攻角情况下,附面层转捩显著推迟,氦气压气机叶型损失得到有效控制。  相似文献   

9.
影响高超声速边界层转捩的因素众多,而地面风洞实验无法充分模拟这些因素,使得风洞实验的转捩数据与真实飞行数据通常存在很大差距.为了把地面风洞实验的转捩数据换算到真实飞行状态下,提高转捩预测精度,选用零度攻角7°半锥角的钝锥模型,利用中国空气动力研究与发展中心的MF-1飞行实验、Φ1m高超声速风洞实验数据以及国外飞行实验和风洞实验数据,通过LST和eN方法,对天地工况的稳定性与转捩进行了对比分析.结果表明,天地之间的稳定性与转捩存在较大差异,天上飞行的壁温比小于地面风洞,导致其第二模态频率大于地面风洞.给出了第二模态最不稳定频率的经验关系式,该关系式同时适用于真实飞行工况和风洞实验工况.研究还发现转捩时的N值(N_T)受钝度雷诺数影响很大,钝度雷诺数越大, N_T越小,甚至当钝度很大时,在边界层模态失稳之前转捩就已经发生.钝锥前缘弓形激波后的流场存在熵层,钝度会影响熵层进入边界层的位置(熵吞点).研究表明,转捩点/熵吞点的相对位置与N_T体现出较好的相关性,且天地趋势一致.通过最小二乘法,给出了转捩点/熵吞点相对位置与N_T的经验关系式,该关系式可方便高效地对类似条件下的高超声速边界层转捩进行预测.  相似文献   

10.
针对流体动力学中的转捩问题,利用基于当地关联的B-C转捩模型,克服了包含输运方程的转捩模型会改变计算过程中的方程个数的缺点,使用间歇因子函数修正S-A湍流模型的生成项来实现转捩模拟功能;并在零压力梯度平板的实验数据基础上对该转捩模型进行了标定。运用B-C转捩模型对二维低速流动问题进行了数值模拟研究,计算结果与实验的对比表明:标定后的B-C转捩模型可以更准确模拟平板算例的转捩位置;在中低雷诺数范围内,标定后的B-C转捩模型可以很准确地计算中等攻角下的翼型的气动力参数。  相似文献   

11.
绕翼型低雷诺数流动的数值仿真   总被引:1,自引:0,他引:1  
层流转捩到湍流及翼型表面分离泡的产生是绕翼型低雷诺数流动的重要特征,对流场产生很大影响。针对这一流动现象,选取E387翼型为研究对象,采用求解雷诺平均N-S方程的有限体积法,结合当前应用较广泛的Spalart-Allmaras,SST k-ω,Realizable k-ε三种湍流模型,对雷诺数为300000时翼型绕流流场进行了数值模拟,并将结果与Selig等人的风洞实验数据进行对比,评估三种湍流模型对绕翼型低雷诺数流动的模拟能力。基于对翼型阻力计算不准原因的分析,提出了一种基于Michel转捩判据的数值模拟方法,分别从分离泡的模拟、壁面摩阻分布、翼型阻力系数等方面与实验数据进行对比,结果表明该方法可以较好的模拟低雷诺翼型绕流流场。  相似文献   

12.
为了改进大涡模拟方法预测湍流有旋流动的能力,将一种基于涡旋强度构建的亚格子涡粘模型应用于悉尼旋流燃烧器的冷态场大涡模拟中.选取高雷诺数低旋流数和低雷诺数高旋流数两种工况,验证该模型在强剪切且有旋流场大涡模拟中的表现,并与动态Smagorinsky(DSM)模型模拟结果以及实验结果进行比较.模拟结果表明,基于涡旋强度模型(SSM)的大涡模拟结果能够合理预测钝体回流区、二次回流区以及中心射流进动等重要特征,同时速度统计矩结果总体好于DSM模型结果.但在旋流剪切层处二阶矩预测较高,说明SSM模型在剪切层处可能耗散较大,需要改进.  相似文献   

13.
高压圆盘气体轴承中气流速度高、雷诺数大,气膜内边界层的发展形态对主流和轴承承载力的影响不可忽视。在数值计算方法可行性验证的基础上,采用γ-Reθ转捩模型对具有双对称收缩段结构的高压圆盘气体轴承气膜内的流场进行数值求解,分析气膜间隙、供气压力及轴承半径对气膜边界层的影响。结果表明,减小气膜间隙、降低供气压力、增大轴承半径,均可促进气膜边界层的发展;边界层完全发展后,主流被边界层淹没,边界层内的黏性力作用于气流,气流速度下降,使气膜内的压力维持在较高水平,从而提高了气体轴承的承载能力。根据数值计算结果确定了高压圆盘气体轴承实验模型的工作参数。  相似文献   

14.
在两方程的剪切应力输运SST k-w全湍流模型中添加γ-Re_θ转捩模型,以某两叶片垂直轴风力机为研究对象,数值计算得到叶片表面压力的分布规律,并与文献中的实验结果进行了对比.在此基础上,分析和对比了添加转捩模型后,风轮的转矩和推力系数、叶片表面极限流线分布和叶片表面摩擦阻力系数的变化规律.结果表明:相比SST k-w全湍流模型,添加γ-Re_θ转捩模型后的四方程Transition SST转捩模型预测得到的风轮的转矩系数和推力系数的均方根分别下降了6.13%和0.55%;计算时考虑γ-Re_θ转捩模型能够预测垂直轴风力机叶片表面边界层的转捩现象和更详细地捕捉叶片表面复杂的流动特征.  相似文献   

15.
针对轴对称空腔内圆盘流动,采用2种紊流模型(即混合长模型、混合长模型与高Re数k-ε方程相结合的分区模型)进行了数值模拟.计算结果表明:当圆盘旋转雷诺数Reθ较低时,流场中存在一个类似于固体旋转的核心区;在高Reθ数、小间隙比时,核心区消失.与实验值相比,k-ε/ML模型得到较好的预测结果  相似文献   

16.
双辊铸轧铸嘴内部铝液流动的三维数值仿真   总被引:3,自引:0,他引:3  
针对在常规铸轧条件下结构型式完全不同的2种铸嘴,根据实际工况,分别应用层流模型和低雷诺数的k-ε湍流模型,用商业软件CFX(version 4.2)对铝液在其内部的流动进行了三维数值仿真.研究结果表明:对于应用层流模型的铸嘴结构,其内部铝液流动的仿真结果与水模实验结果基本一致;对于应用低雷诺数的湍流模型的铸嘴结构,其内部铝液流动的仿真结果能较好地为铸嘴结构及参数的改进提供依据.尽管2种铸嘴结构的差异很大,铸嘴入口处的流动状态不同,分别处于层流和湍流的状态,但铸嘴出口处沿铸轧方向的流速分布规律在铸嘴宽度和高度方向非常相似.  相似文献   

17.
针对实际汽油组分复杂导致数值模拟研究困难的问题,采用球形火焰法,在定容燃烧弹上测量了初始温度分别为358、403、448 K,初始压力分别为0.1、0.2、0.5 MPa,当量比为0.8~1.5工况下,实际汽油、正庚烷、异辛烷、甲苯、异辛烷/正庚烷混合燃料(PRF)、甲苯/异辛烷/正庚烷混合燃料(TRF)的层流燃烧速度,分析了初始温度、压力以及当量比对汽油的层流燃烧速度的影响规律,对比了不同替代物模型对实际汽油的层流燃烧速度的预测结果。基于实验结果,构建了适合我国汽油的双组分和三组分汽油替代物模型,对比结果表明,在本研究的实验工况范围内,三组分汽油替代物模型比双组分汽油替代物模型能够更好预测实际汽油层流燃烧速度。应用Chemkin软件和KAUST清洁燃烧研究中心近期发展的汽油替代物机理,对本研究实验数据进行了数值仿真,该机理对实验数据给出了合理预测。利用本研究提出的汽油替代物模型,可对实际汽油的层流燃烧速度进行合理的预测。  相似文献   

18.
以NASA-MARKⅡ跨音速涡轮叶片以及某低压涡轮导叶为例进行了考虑转捩的气热耦合计算. 首先开发了有限差分气热耦合求解器,采用直接耦合方法进行流固区域的数据传递,并采用AGS代数转捩模型来预测叶片表面的转捩流动现象. 然后以NASA-MARKⅡ叶片的5411号试验工况为例对该转捩模型进行了验证,对比表明AGS模型能够预测叶片表面的转捩流动过程,所预测的叶片表面温度分布与对流换热系数分布和实验值吻合较好. 最后采用该耦合求解器对某双腔内冷以及尾缘劈缝的低压涡轮进行气热耦合计算,对叶片的热负荷进行了分析.   相似文献   

19.
用SIMPLER算法对流过环形后台阶通道内的层流分离和再附着进行了数值模拟。计算区域的离散化采用交错网络,用FORTRAN90编制了相应的USER子程序,求解了相应的Navier-Stokes方程组。根据计算结果绘出了不同雷诺数下的流线图,并将计算得到的再附着点位置的无量纲值与文献[1]进行了比较,发现计算结果与文献[1]基本吻合。  相似文献   

20.
对几何特性相似而粗糙度不同的3种不锈钢矩形微槽内水、乙醇和正己烷的流动特性进行了实验研究.研究发现,在层流区随着雷诺数(Re)的增大,摩擦阻力常数fRe也缓慢增大,与传统理论的fRe是常数不同,且相对粗糙度越大,fRe值也越大.对于相对粗糙度较小(k/D_h<3%)的两种微槽转捩Re均在1 685~1 760之间,与传统理论相比,转捩并未提前.但相对粗糙度为3.15%的微槽的转捩Re数为1 500,与传统理论相比,转捩已提前.层流区摩擦阻力系数均高于传统理论预测值,相对粗糙度较小(k/D_h<3%)的两个微槽的摩擦阻力系数在Re<1 600的层流区域基本相同。但在Re=200~2 800的测量范围内,相对粗糙度大于3%的微槽的摩擦阻力系数均比相对粗糙度小于3%的微槽的要大.过渡区域的摩擦阻力系数均比传统预测值高30%~40%.工质极性对摩擦阻力的影响很小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号