首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Antarctic ice-sheet loss driven by basal melting of ice shelves   总被引:6,自引:0,他引:6  
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.  相似文献   

2.
Current ice loss from the West Antarctic Ice Sheet (WAIS) accounts for about ten per cent of observed global sea-level rise. Losses are dominated by dynamic thinning, in which forcings by oceanic or atmospheric perturbations to the ice margin lead to an accelerated thinning of ice along the coastline. Although central to improving projections of future ice-sheet contributions to global sea-level rise, the incorporation of dynamic thinning into models has been restricted by lack of knowledge of basal topography and subglacial geology so that the rate and ultimate extent of potential WAIS retreat remains difficult to quantify. Here we report the discovery of a subglacial basin under Ferrigno Ice Stream up to 1.5?kilometres deep that connects the ice-sheet interior to the Bellingshausen Sea margin, and whose existence profoundly affects ice loss. We use a suite of ice-penetrating radar, magnetic and gravity measurements to propose a rift origin for the basin in association with the wider development of the West Antarctic rift system. The Ferrigno rift, overdeepened by glacial erosion, is a conduit which fed a major palaeo-ice stream on the adjacent continental shelf during glacial maxima. The palaeo-ice stream, in turn, eroded the 'Belgica' trough, which today routes warm open-ocean water back to the ice front to reinforce dynamic thinning. We show that dynamic thinning from both the Bellingshausen and Amundsen Sea region is being steered back to the ice-sheet interior along rift basins. We conclude that rift basins that cut across the WAIS margin can rapidly transmit coastally perturbed change inland, thereby promoting ice-sheet instability.  相似文献   

3.
Raymo ME  Mitrovica JX 《Nature》2012,483(7390):453-456
Contentious observations of Pleistocene shoreline features on the tectonically stable islands of Bermuda and the Bahamas have suggested that sea level about 400,000 years ago was more than 20 metres higher than it is today. Geochronologic and geomorphic evidence indicates that these features formed during interglacial marine isotope stage (MIS) 11, an unusually long interval of warmth during the ice age. Previous work has advanced two divergent hypotheses for these shoreline features: first, significant melting of the East Antarctic Ice Sheet, in addition to the collapse of the West Antarctic Ice Sheet and the Greenland Ice Sheet; or second, emplacement by a mega-tsunami during MIS 11 (ref. 4, 5). Here we show that the elevations of these features are corrected downwards by ~10 metres when we account for post-glacial crustal subsidence of these sites over the course of the anomalously long interglacial. On the basis of this correction, we estimate that eustatic sea level rose to ~6-13?m above the present-day value in the second half of MIS 11. This suggests that both the Greenland Ice Sheet and the West Antarctic Ice Sheet collapsed during the protracted warm period while changes in the volume of the East Antarctic Ice Sheet were relatively minor, thereby resolving the long-standing controversy over the stability of the East Antarctic Ice Sheet during MIS 11.  相似文献   

4.
Rapid warming over the past 50?years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500?years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600?years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.  相似文献   

5.
Cuffey KM  Marshall SJ 《Nature》2000,404(6778):591-594
During the last interglacial period (the Eemian), global sea level was at least three metres, and probably more than five metres, higher than at present. Complete melting of either the West Antarctic ice sheet or the Greenland ice sheet would today raise sea levels by 6-7 metres. But the high sea levels during the last interglacial period have been proposed to result mainly from disintegration of the West Antarctic ice sheet, with model studies attributing only 1-2 m of sea-level rise to meltwater from Greenland. This result was considered consistent with ice core evidence, although earlier work had suggested a much reduced Greenland ice sheet during the last interglacial period. Here we reconsider the Eemian evolution of the Greenland ice sheet by combining numerical modelling with insights obtained from recent central Greenland ice-core analyses. Our results suggest that the Greenland ice sheet was considerably smaller and steeper during the Eemian, and plausibly contributed 4-5.5 m to the sea-level highstand during that period. We conclude that the high sea level during the last interglacial period most probably included a large contribution from Greenland meltwater and therefore should not be interpreted as evidence for a significant reduction of the West Antarctic ice sheet.  相似文献   

6.
Extreme winds and waves in the aftermath of a Neoproterozoic glaciation   总被引:1,自引:0,他引:1  
Allen PA  Hoffman PF 《Nature》2005,433(7022):123-127
The most severe excursions in the Earth's climatic history are thought to be associated with Proterozoic glaciations. According to the 'Snowball Earth' hypothesis, the Marinoan glaciation, which ended about 635 million years ago, involved global or nearly global ice cover. At the termination of this glacial period, rapid melting of continental ice sheets must have caused a large rise in sea level. Here we show that sediments deposited during this sea level rise contain remarkable structures that we interpret as giant wave ripples. These structures occur at homologous stratigraphic levels in Australia, Brazil, Canada, Namibia and Svalbard. Our hydrodynamic analysis of these structures suggests maximum wave periods of 21 to 30 seconds, significantly longer than those typical for today's oceans. The reconstructed wave conditions could only have been generated under sustained high wind velocities exceeding 20 metres per second in fetch-unlimited ocean basins. We propose that these extraordinary wind and wave conditions were characteristic of the climatic transit, and provide observational targets for atmospheric circulation models.  相似文献   

7.
DeConto RM  Pollard D 《Nature》2003,421(6920):245-249
The sudden, widespread glaciation of Antarctica and the associated shift towards colder temperatures at the Eocene/Oligocene boundary (approximately 34 million years ago) (refs 1-4) is one of the most fundamental reorganizations of global climate known in the geologic record. The glaciation of Antarctica has hitherto been thought to result from the tectonic opening of Southern Ocean gateways, which enabled the formation of the Antarctic Circumpolar Current and the subsequent thermal isolation of the Antarctic continent. Here we simulate the glacial inception and early growth of the East Antarctic Ice Sheet using a general circulation model with coupled components for atmosphere, ocean, ice sheet and sediment, and which incorporates palaeogeography, greenhouse gas, changing orbital parameters, and varying ocean heat transport. In our model, declining Cenozoic CO2 first leads to the formation of small, highly dynamic ice caps on high Antarctic plateaux. At a later time, a CO2 threshold is crossed, initiating ice-sheet height/mass-balance feedbacks that cause the ice caps to expand rapidly with large orbital variations, eventually coalescing into a continental-scale East Antarctic Ice Sheet. According to our simulation the opening of Southern Ocean gateways plays a secondary role in this transition, relative to CO2 concentration.  相似文献   

8.
Gudmundsson GH 《Nature》2006,444(7122):1063-1064
Most of the ice lost from the Antarctic ice sheet passes through a few fast-flowing and highly dynamic ice streams. Quantifying temporal variations in flow in these ice streams, and understanding their causes, is a prerequisite for estimating the potential contribution of the Antarctic ice sheet to global sea-level change. Here I show that surface velocities on a major West Antarctic Ice Stream, Rutford Ice Stream, vary periodically by about 20 per cent every two weeks as a result of tidal forcing. Tidally induced motion on ice streams has previously been thought to be limited to diurnal or even shorter-term variations. The existence of strong fortnightly variations in flow demonstrates the potential pitfalls of using repeated velocity measurements over intervals of days to infer long-term change.  相似文献   

9.
AP Ballantyne  CB Alden  JB Miller  PP Tans  JW White 《Nature》2012,488(7409):70-72
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4?±?0.8 to 5.0?±?0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.  相似文献   

10.
During the field work of the 1998~1999's and 1999~2000's Chinese National Antarctic Research Expedition (CHNARE) in the Grove Mountains, east Antarctica, some Cenozoic sedimentary debris are found in two terminal moraine banks over the blue ice near Harding Mount in the center of this region. All the debris are of characteristics of glaciogenic diamicton and belong to the products of the glacial movements of the East Antarctic Ice Sheet. In this paper, the authors make a detailed study on the sedimentary environments of the sedimentary debris through petrologic, sedimentological, mineralogical, and geo-chemical methods. Characteristics of their sedimentary textures and structures, grain size distributions, quartz grains' surface textures and features, together with their geo-chemical compositions all show that these sedimentary rocks are a kind of subglacial lodgement tills which are deposited in the ice sheet frontal area by reactions of glacial movements and glaciogenic melt water. Their palaeoenvironmental implications in revealing the retreat history of East Antarctic Ice Sheet are discussed. The authors draw the conclusion from current study that the glacial frontal of the East Antarctica Ice Sheet might have been retreated to this area during the Pliocene Epoch, which represents a warm climate event accompanied by a large-scale ice sheet retreat in Antarctica at that time.  相似文献   

11.
Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14?kilometres thick and an estimated 21,000 petagrams (1?Pg equals 10(15)?g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300?metres in West Antarctica and 700?metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.  相似文献   

12.
为了研究南极冰盖消融对全球海平面变化的影响,利用2003年1月—2016年6月的重力恢复与气候实验时变重力场数据反演该地区冰盖质量变化,并采用去相关滤波P3M6加上300 km Fan滤波的组合算法削弱条带误差等影响,扣除冰后回弹和泄露误差影响.结果表明:南极地区冰盖质量变化整体表现为加速消融趋势,其质量变化率为(-101.27±7.02)Gt/a,其中西南极和南极半岛呈现质量消融,其质量变化率分别为(-148.35±6.78)Gt/a和(-22.01±1.44)Gt/a,而东南极表现为质量积累,其质量变化率为(69.09±2.64)Gt/a.  相似文献   

13.
Dome A, located in the central East Antarctic ice sheet (EAIS), is the highest summit of the Antarctic ice sheet. From ice-sheet evolution modeling results, Dome A is likely to preserve over one million years of the Earth’s paleo-climatic and -environmental records, and considered an ideal deep ice core drilling site. Ice thickness and subglacial topography are critical factors for ice-sheet models to determine the timescale and location of a deep ice core. During the 21st and 24th Chinese National Antarctic Research Expedition (CHINARE 21, 2004/05; CHINARE 24, 2007/08), ground-based ice radar systems were used to a three-dimensional investigation in the central 30 km×30 km region at Dome A. The successfully obtained high resolution and accuracy data of ice thickness and subglacial topography were then interpolated into the ice thickness distribution and subglacial topography digital elevation model (DEM) with a regular grid resolution of 140.5 m×140.5 m. The results of the ice radar investigation indicate that the average ice thickness in the Dome A central 30 km×30 km region is 2233 m, with a minimal ice thickness of 1618 m and a maximal ice thickness of 3139 m at Kunlun Station. The subglacial topography is relatively sharp, with an elevation range of 949–2445 m. The typical, clear mountain glaciation morphology is likely to reflect the early evolution of the Antarctic ice sheet. Based on the ice thickness distribution and subglacial topography characteristics, the location of Kunlun Station was suggested to carry out the first high-resolution, long time-scale deep ice core drilling. However, the internal structure and basal environments at Kunlun Station still need further research to determine.  相似文献   

14.
The first Cenozoic ice sheets initiated in Antarctica from the Gamburtsev Subglacial Mountains and other highlands as a result of rapid global cooling ~34 million years ago. In the subsequent 20 million years, at a time of declining atmospheric carbon dioxide concentrations and an evolving Antarctic circumpolar current, sedimentary sequence interpretation and numerical modelling suggest that cyclical periods of ice-sheet expansion to the continental margin, followed by retreat to the subglacial highlands, occurred up to thirty times. These fluctuations were paced by orbital changes and were a major influence on global sea levels. Ice-sheet models show that the nature of such oscillations is critically dependent on the pattern and extent of Antarctic topographic lowlands. Here we show that the basal topography of the Aurora Subglacial Basin of East Antarctica, at present overlain by 2-4.5?km of ice, is characterized by a series of well-defined topographic channels within a mountain block landscape. The identification of this fjord landscape, based on new data from ice-penetrating radar, provides an improved understanding of the topography of the Aurora Subglacial Basin and its surroundings, and reveals a complex surface sculpted by a succession of ice-sheet configurations substantially different from today's. At different stages during its fluctuations, the edge of the East Antarctic Ice Sheet lay pinned along the margins of the Aurora Subglacial Basin, the upland boundaries of which are currently above sea level and the deepest parts of which are more than 1?km below sea level. Although the timing of the channel incision remains uncertain, our results suggest that the fjord landscape was carved by at least two iceflow regimes of different scales and directions, each of which would have over-deepened existing topographic depressions, reversing valley floor slopes.  相似文献   

15.
Merico A  Tyrrell T  Wilson PA 《Nature》2008,452(7190):979-982
One of the most dramatic perturbations to the Earth system during the past 100 million years was the rapid onset of Antarctic glaciation near the Eocene/Oligocene epoch boundary (approximately 34 million years ago). This climate transition was accompanied by a deepening of the calcite compensation depth--the ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution. Changes in the global carbon cycle, rather than changes in continental configuration, have recently been proposed as the most likely root cause of Antarctic glaciation, but the mechanism linking glaciation to the deepening of calcite compensation depth remains unclear. Here we use a global biogeochemical box model to test competing hypotheses put forward to explain the Eocene/Oligocene transition. We find that, of the candidate hypotheses, only shelf to deep sea carbonate partitioning is capable of explaining the observed changes in both carbon isotope composition and calcium carbonate accumulation at the sea floor. In our simulations, glacioeustatic sea-level fall associated with the growth of Antarctic ice sheets permanently reduces global calcium carbonate accumulation on the continental shelves, leading to an increase in pelagic burial via permanent deepening of the calcite compensation depth. At the same time, fresh limestones are exposed to erosion, thus temporarily increasing global river inputs of dissolved carbonate and increasing seawater delta13C. Our work sheds new light on the mechanisms linking glaciation and ocean acidity change across arguably the most important climate transition of the Cenozoic era.  相似文献   

16.
Lake Vostok, the largest subglacial lake in Antarctica, is covered by the East Antarctic ice sheet, which varies in thickness between 3,750 and 4,100 m (ref. 1). At a depth of 3,539 m in the drill hole at Vostok station, sharp changes in stable isotopes and the gas content of the ice delineate the boundary between glacier ice and ice accreted through re-freezing of lake water. Unlike most gases, helium can be incorporated into the crystal structure of ice during freezing, making helium isotopes in the accreted ice a valuable source of information on lake environment. Here we present helium isotope measurements from the deep section of the Vostok ice core that encompasses the boundary between the glacier ice and accreted ice, showing that the accreted ice is enriched by a helium source with a radiogenic isotope signature typical of an old continental province. This result rules out any significant hydrothermal energy input into the lake from high-enthalpy mantle processes, which would be expected to produce a much higher 3He/4He ratio. Based on the average helium flux for continental areas, the helium budget of the lake leads to a renewal time of the lake of the order of 5,000 years.  相似文献   

17.
Bintanja R  van de Wal RS  Oerlemans J 《Nature》2005,437(7055):125-128
Marine records of sediment oxygen isotope compositions show that the Earth's climate has gone through a succession of glacial and interglacial periods during the past million years. But the interpretation of the oxygen isotope records is complicated because both isotope storage in ice sheets and deep-water temperature affect the recorded isotopic composition. Separating these two effects would require long records of either sea level or deep-ocean temperature, which are currently not available. Here we use a coupled model of the Northern Hemisphere ice sheets and ocean temperatures, forced to match an oxygen isotope record for the past million years compiled from 57 globally distributed sediment cores, to quantify both contributions simultaneously. We find that the ice-sheet contribution to the variability in oxygen isotope composition varied from ten per cent in the beginning of glacial periods to sixty per cent at glacial maxima, suggesting that strong ocean cooling preceded slow ice-sheet build-up. The model yields mutually consistent time series of continental mean surface temperatures between 40 and 80 degrees N, ice volume and global sea level. We find that during extreme glacial stages, air temperatures were 17 +/- 1.8 degrees C lower than present, with a 120 +/- 10 m sea level equivalent of continental ice present.  相似文献   

18.
Dengler M  Schott FA  Eden C  Brandt P  Fischer J  Zantopp RJ 《Nature》2004,432(7020):1018-1020
The existence in the ocean of deep western boundary currents, which connect the high-latitude regions where deep water is formed with upwelling regions as part of the global ocean circulation, was postulated more than 40 years ago. These ocean currents have been found adjacent to the continental slopes of all ocean basins, and have core depths between 1,500 and 4,000 m. In the Atlantic Ocean, the deep western boundary current is estimated to carry (10-40) x 10(6) m3 s(-1) of water, transporting North Atlantic Deep Water--from the overflow regions between Greenland and Scotland and from the Labrador Sea--into the South Atlantic and the Antarctic circumpolar current. Here we present direct velocity and water mass observations obtained in the period 2000 to 2003, as well as results from a numerical ocean circulation model, showing that the Atlantic deep western boundary current breaks up at 8 degrees S. Southward of this latitude, the transport of North Atlantic Deep Water into the South Atlantic Ocean is accomplished by migrating eddies, rather than by a continuous flow. Our model simulation indicates that the deep western boundary current breaks up into eddies at the present intensity of meridional overturning circulation. For weaker overturning, continuation as a stable, laminar boundary flow seems possible.  相似文献   

19.
New focuses of polar ice-core study: NEEM and Dome A   总被引:1,自引:0,他引:1  
Ice core records from polar regions are of great value to study long-term climate and environmental change. Greenland ice-core records are celebrated for their high resolution and have provided very important knowledge for understanding the late Quaternary palaeoclimate, especially in reference to millennial-scale abrupt climatic flips during the last glaciation. Recently, a new project to retrieve a deep ice-core from Greenland known as NEEM for North Greenland Eemian Ice Drilling, has been launched with the main target being the last interglacial period. The new core will help us understand further details of climate changes during a period of warmth as the present. Antarctic ice cores have a unique advantage in providing recovery of longer time-scale paleclimate information and hence are regarded as a crucial pillar to examine climatic cycles on the time-scale of Earth-orbital phenomena. Since the bottom ice in Dome A is estimated to be older than a million years, a deep drilling there becomes a new focus for ice core studies. Supported by Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-SW-354) and National Key Technology Research and Development Program (Grant No. 2006BAB18B01)  相似文献   

20.
Sundal AV  Shepherd A  Nienow P  Hanna E  Palmer S  Huybrechts P 《Nature》2011,469(7331):521-524
Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets, but their impact on the Greenland ice sheet in a warming climate remains uncertain. Although some studies suggest that greater melting produces greater ice-sheet acceleration, others have identified a long-term decrease in Greenland's flow despite increased melting. Here we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speed-up are positively correlated with the degree of melting, mean summer flow rates are not, because glacier slowdown occurs, on average, when a critical run-off threshold of about 1.4?centimetres a day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speed-up during the latter half is 62?±?16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter and, overall, summer ice flow is slower. This behaviour is at odds with that expected from basal lubrication alone. Instead, it mirrors that of mountain glaciers, where melt-induced acceleration of flow ceases during years of high melting once subglacial drainage becomes efficient. A model of ice-sheet flow that captures switching between cavity and channel drainage modes is consistent with the run-off threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland ice-sheet flow under climate warming scenarios should account for the dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet's response to climate warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号