首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
针对小型无人机速度控制精度差的问题,提出一种基于增量非线性动态逆的速度控制方法。首先,根据无人机运动方程和推力模型建立速度控制模型;其次,应用非线性动态逆方法获得油门控制指令与速度的直接关系式;最后,再重写无人机运动方程为增量形式,得到油门控制指令增量与加速度的控制关系式,并依此设计了速度控制律。为某飞机构建推力模型和增量动态逆速度控制器,飞行试验验证了所提方法的有效性。  相似文献   

2.
微型涵道飞行器可以悬停、垂直起降和前飞,且安全性高、结构紧凑、噪声低。但是,微型涵道飞行器由于大飞行包线、特殊气动布局、低速度、小尺寸和复杂飞行环境,所以具有明显的非定常和非线性飞行力学特性。针对这一问题,研究了应用动态逆控制律的新方法--神经网络自适应逆。采用动态逆控制器、神经网络补偿器、比例微分(proportion-derivative,PD)补偿器和伪控制补偿器构建了微型涵道飞行器飞行控制系统。仿真结果表明,相比动态逆 比例积分微分(proportion-integral-derivative,PID控制系统,本文设计的自适应逆控制系统具有更强的稳定性和鲁棒性。  相似文献   

3.
在有风浪的复杂海况下,需要自主着舰的无人机与舰船两者相对运动带有极大不确定性,为了提高无人机着舰时相对定位以及控制的精度,确保无人机着舰时的安全性与可靠性,提出一种通过差分对流层误差的相对精密单点定位技术(relative precise point position, RPPP)。该技术仅依靠数据链和载波型卫星定位接收机,消除相同环境下卫星定位相同误差,获得精确相对定位。将比例导引与LQR(linear quadratic regulator)控制器相结合,解决了无人机着舰入射角偏差较大的问题,提高了无人机着舰末段高程方向及入射角度的控制精度。对无人机着舰轨迹进行规划,建立无人机着舰的运动模型,设计无人机着舰横向和纵向的控制律,搭建无人机自主着舰的仿真平台。仿真结果表明,采用上述算法着舰误差控制在0.2 m以下,入射角偏差在10-3量级,可满足无人机着舰要求。  相似文献   

4.
针对无人机编队飞行过程中领航无人机在三维空间机动飞行时的编队队形保持问题,构建了无人机三维编队保持控制系统。根据无人机编队飞行三维空间几何学关系,利用无人机自动驾驶仪模型和编队运动学模型建立了旋转坐标系下三维编队飞行的数学模型。在考虑闭环系统存在时变外界干扰的情况下,设计了无人机编队保持的自适应控制器,并基于李亚普诺夫理论,对设计的自适应控制律的稳定性进行了证明。最后通过仿真验证,该控制器能够有效抑制干扰带来的影响,使僚机能够迅速跟随长机机动,并保持编队队形的稳定。  相似文献   

5.
针对无人机着舰这一特殊环境,为克服系统摄动、未建模动态及各种环境干扰因素的不良影响,从工程实现易行性出发,提出一种新的积分滑模着舰飞行控制方法,避免其受传统积分切换函数滑模控制方法的应用限制,并采用自适应模糊系统抵消外界干扰带来的误差,逼近滑模控制器中的切换项,从而有效降低舵面的抖振。搭建自动着舰综合仿真平台,以国外现役某小型舰载无人机为例,仿真结果表明,该自动着舰系统能较好地克服各种因素的影响,实现无人机安全着舰,着舰性能符合要求。  相似文献   

6.
针对存在船舶动态不确定和外界干扰的欠驱动水面船舶轨迹跟踪控制问题,提出一种基于动态面控制(dynamic surface control,DSC)和最小学习参数法(minimal learning parameter,MLP)的自适应滑模控制方法。在控制律的设计过程中,为实现位置跟踪误差的收敛,利用反步法设计船舶前向速度和横漂速度的虚拟控制律镇定轨迹跟踪误差;引入DSC技术,用于消除反步法对虚拟控制求导引起的“微分爆炸”问题;另外,采用MLP技术,以单参数在线学习代替所有权值在线学习,减少控制器的计算量,避免出现“维数灾难”问题,并结合带有“σ-修正”的自适应律,防止参数漂移,易于工程的实现。稳定性分析证明了所设计控制律可以保证轨迹跟踪船舶闭环系统中轨迹跟踪误差信号一致最终有界,仿真结果验证了所设计控制器的有效性。  相似文献   

7.
基于RBF网络的机械人鲁棒自适应控制与仿真分析   总被引:1,自引:0,他引:1  
针对电机驱动机器人模型,设计了一种鲁棒自适应控制器.首先用动态RBF神经网络逼近机器人动态模型,然后设计了一个带积分器的滤波器,由滤波器系统推导出所需的理想输入电流,再以理想输入电流为目标设计电机控制器并得到最终控制律.基于Lyapunov稳定理论分析了鲁棒自适应控制器的稳定性,给出了稳定性充分条件.实例仿真结果表明,合理的选择控制器参数可使系统具有良好的动态特性和鲁棒稳定性.  相似文献   

8.
针对起竖系统存在非线性特性、参数不确定性以及环境干扰等问题,在起竖系统的起竖控制过程中,提出了一种动态面自适应滑模的控制策略。建立了起竖系统的非线性数学模型,在滑模控制器设计中,引入动态面控制,利用一阶积分滤波器来计算虚拟控制项的导数,使控制器设计简单,加入自适应控制算法,实现对不确定参数的在线估计,消除系统的不确定性,并给出了控制律和自适应律。仿真结果表明,与比例积分微分控制和一般滑模控制相比,所提控制方法有较强的鲁棒性和良好的跟踪性能,提高了起竖过程的稳定性。  相似文献   

9.
针对一类非匹配不确定非线性系统,设计了一种高阶鲁棒自适应反推滑模变结构控制方法。在控制器设计中,考虑存在系统建模误差和外界未知干扰,借鉴动态面思想降低控制器复杂性,引入双曲正切函数和抖振衰减因子降低控制输入抖振,设计系统建模误差自适应律增强控制器鲁棒性,并将系统的稳定性证明简化为判断一个n阶对称矩阵的正定性问题。将设计的反推滑模控制器用于F-8飞机纵向机动控制并进行仿真,实现了飞机对指定轨迹的稳定跟踪。  相似文献   

10.
针对基于视觉的多无人机协同目标跟踪控制律设计问题,对无人机协同控制策略进行了研究。分别提出了两架及多架无人机协同速度控制律,使无人机能够动态调整速度,以较低速度跟踪目标。针对多架无人机提出了一种最小化各无人机到目标夹角误差平方和的夹角误差定义方法,提高了无人机协同效率。仿真实验验证了本文提出的夹角误差定义方法和协同控制律的有效性。  相似文献   

11.
针对扰动条件下的无人机编队飞行控制系统,研究了一种将非线性动态逆(nonlinear dynamic inversion, NDI)理论与超扭曲算法相结合的非线性编队控制方法。以其中一架僚机的编队控制器设计为例,在无人机质心动力学和运动学模型的基础上,建立了基于偏差的编队控制系统,从而将编队控制问题转化为僚机的路径跟踪问题;在二阶滑模控制中超扭曲算法的基础上,设计了僚机的NDI控编队控制器,以消除滑模算法中存在的抖振现象,并实现对位置指令的跟踪及干扰的抑制。最后以3架编队无人机构成的编队飞行控制系统为例,对此方法进行了数学仿真,仿真结果表明基于该方法的编队控制系统具有良好的稳定性和鲁棒性。  相似文献   

12.
针对新型串置翼布局推力矢量无人机在垂直起降、过渡机动飞行过程中强非线性、强耦合及控制冗余的问题,采用动态逆控制方法设计全局控制系统,无需针对不同飞行模式切换控制策略。在此基础上,提出二级递进式控制分配策略,将序列二次规划、链式递增方法相结合,对航迹回路和姿态回路的控制量进行综合优化分配。同时,根据任务需求及飞行状态,基于离线数据库在线实时更新直接力控制分配目标函数权值。采用松弛约束策略,局部放宽非线性优化问题约束,增加优化求解速度。仿真结果表明该控制器能够有效跟踪高机动目标航迹。  相似文献   

13.
无人机鲁棒轨迹线性化控制航迹跟踪设计   总被引:1,自引:0,他引:1  
研究一种鲁棒轨迹线性化控制方法并将其应用于无人机(unmanned aerial vehicle, UAV)航迹跟踪控制设计。通过理论分析指明传统轨迹线性化控制方法对系统中的不确定性存在鲁棒性不足的问题,采用改进隐层自适应神经网络对不确定性进行补偿,并利用Lyapunov理论证明了跟踪误差的有界性,最后将该方法应用到无人机三维航迹跟踪控制中。仿真结果表明,当参数摄动在20%时,该控制方法仍能使UAV很好地跟踪理想航迹,从而验证了该方法的有效性。  相似文献   

14.
本文研究了无人机集群躲避动态障碍物下的队形控制问题。首先, 引入针对动态障碍物的碰撞预判机制判断集群是否需要对障碍物进行规避。其次, 在动态障碍物与无人机间构造斥力场实现避障。最后, 根据一致性理论设计基于集群各无人机之间、无人机与虚拟领导者之间的位置、速度一致性控制律, 结合人工势场法实现躲避动态障碍物下集群队形的形成与保持。仿真结果表明, 集群无人机能够在以分布式方式躲避动态障碍物的同时实现队形的形成、保持与重构。  相似文献   

15.
基于大脑情感学习的推力矢量无人机姿态控制   总被引:1,自引:0,他引:1  
建立了与普通无人机相区别的带推力矢量的无人机数学模型,并提出了一种基于大脑情感学习(brain emotion learning, BEL)的推力矢量无人机姿态控制方法。首先设计了气动控制器和近似推力矢量控制器,然后设计了基于BEL算法的推力矢量控制补偿器。对无人机全量模型进行非线性数值仿真,结果验证了所建立的数学模型的正确性、推力矢量技术在无人机姿态控制上的特定优势以及BEL智能方法的自学习、自适应能力。  相似文献   

16.
Kang  Bing  Miao  Yan  Liu  Fu  Duan  Jilu  Wang  Ke  Jiang  Shoukun 《系统科学与复杂性》2021,34(2):520-536
Quad-rotor unmanned aerial vehicle(UAV) is a typical multiple-input-multiple-output underactuated system with couplings and nonlinearity. Usually, the flying environment is very complex,so that it is impossible for the UAV to avoid effects derived from disturbances and uncertainties. In order to improve the reliability of flight control, we established the dynamic model of quad-rotor UAV by Newton-Euler equation in unbalanced load conditions. Considering external disturbances in the attitude, a second-order sliding mode controller was designed with PID sliding mode surface and Extended State Observer(ESO). The simulation experiments have got good control performance,illustrating the effectiveness of our controller. Meanwhile, the controller was implemented in a quadrotor UAV, which carried a pan-tilt camera for aerial photography. The actual flight experiments proved that this paper dealt with the high stabilization flight control problem for the quad-rotor UAV,which laid a good foundation for autonomous flight of the UAV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号