首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 367 毫秒
1.
介绍了X射线脉冲星轨道确定原理,在分析脉冲星相位模型的基础上,推导了X射线脉冲星轨道确定算法,讨论了时间估计法在解模糊度问题中的应用,针对高轨卫星提出了利用其大致高度信息辅助解模糊度的方法。对地球静止轨道卫星初轨确定进行了仿真,结果表明选用周期较大的脉冲星并采用时间估计与高度信息辅助的方法可以有效解决模糊度问题,并达到几十公里级的初轨确定精度。  相似文献   

2.
研究了近地绕飞双星系统的自主定轨问题,设计了一种基于相对视线矢量测量的自主导航方法.本方法利用导航相机观测双星之间的相对视线矢量,并转化为相机坐标系下的像元像线,从而得到导航系统的量测模型;然后结合卫星的轨道动力学方程,通过扩展卡尔曼滤波算法精确估计双星在地心惯性系下的位置和速度共12个分量.最后,通过数学仿真验证了此导航方法的可行性.  相似文献   

3.
基于星敏感器的星光折射卫星自主导航方法研究   总被引:2,自引:1,他引:2  
研究了基于星光折射量测进行自主确定卫星姿态及轨道的方法。这种导航方案利用高精度的CCD星敏感器,结合星光穿越大气的较精确的数学模型,来间接敏感地平,从而实现对卫星的精确定位和定姿。为了说明所提导航方案的有效性,采用推广卡尔曼滤波算法,结合模拟的测量数据对自主定轨进行了仿真。仿真结果表明,定轨精度优于100m。还分析比较了采样周期、星敏感器精度、恒星数目等因素对定轨精度的影响。总结了其变化规律,可用于提高卫星自主定轨精度。  相似文献   

4.
针对基于双星定位系统的近地卫星联合定轨中的多源观测数据的融合处理问题,分别建立了基于测量噪声独立同分布和测量噪声相关的多源融合测量模型,提出了一种基于矩阵Cholesky分解的广义测量模型和测量噪声去相关方法。设计了多源融合测量模型的多结构非线性最优加权参数估计实现算法,并以双星定位系统的星敏感器测角与距离和测量信息为例,进行了联合定轨仿真实验。理论分析与仿真计算结果表明,相对于仅用距离和测量信息与平均加权方式,基于多源观测数据的最优加权联合定轨方法能够进一步改善卫星定轨精度。  相似文献   

5.
低轨空间碎片数量巨大, 对航天器在轨安全运行造成严重影响。天基光学是空间碎片观测的重要发展方向。低轨天基光学观测平台观测低地球轨道空间厘米级碎片的观测弧段相对较短, 由单个观测弧段难以确定目标的初始轨道, 初始轨道的误差也不容易评估。本文基于可行域方法, 建立了初始轨道确定和误差估计算法。针对天基短弧光学观测数据的初始轨道不易确定的问题, 本文提出了圆轨道辅助可行域方法。通过与商业遥感卫星合作, 利用遥感视频星开展了低轨空间碎片观测实验, 并利用天基实测数据对所提出的计算方法进行了验证, 为后续利用初始轨道进行弧段间关联奠定了基础。  相似文献   

6.
为提高连接端站干涉(connected-element interferometry, CEI)测量对地球静止卫星轨道(geostationary satellite orbit, GEO)空间角位置的测量精度, 通常采用射电源标校消除大部分公共误差, 但需要在测站配置大口径高增益天线以接收射电源的微弱信号。针对该问题, 以北斗导航卫星为标校源, 仅利用测站现有天线即可实现高精度CEI测量。利用喀什测控站相距20 km的两套天线设备对天链GEO卫星开展CEI测量。经北斗卫星校准后, 时延测量精度可达0.03 ns。定轨结果表明, 7 h的时延和单站测距数据联合定轨位置精度可达37 m, 预报12 h位置偏差约为78 m。与3 000 km范围分布的多站测距系统24 h弧段定轨精度相当, 验证了该技术用于GEO卫星高精度测定轨和机动后轨道恢复的可行性。  相似文献   

7.
由于卫星轨道观测数据中含有非线性影响因素,必然会降低定轨精度。将半参数回归模型引入卫星批处理定轨方法中,基于半参数回归模型补偿最小二乘估计法,提出了一种卫星事后轨道改进方法,以降低非线性影响并提高定轨精度。当测量数据存在非线性影响因素时,在理论上证明了半参数回归模型补偿最小二乘估计法优于经典最小二乘估计法。最后,对中低轨卫星定轨进行了仿真,结果表明基于半参数回归模型补偿最小二乘估计法的卫星事后轨道改进方法分离出观测数据中的非线性影响因素,从而提高定轨精度。  相似文献   

8.
折射误差是观测数据包含的主要误差源之一,也是影响卫星跟踪与控制以及轨道确定精度的主要因素。由于实时观测数据采样格式的不同,同一个采样时间内本应互相匹配的测量元素,因为丢失、干扰等而变得不再匹配,从而使得卫星实时跟踪数据包含的折射误差难以准确修正。提出的观测数据双向稳健补偿方法有效地解决了同一采样时间内测量元素的匹配问题,以及折射误差的修正问题,确保了卫星轨道确定的精度。实测数据计算以及定轨结果检验表明,该方法是有效的实用方法。  相似文献   

9.
针对低轨星座协同探测弹道目标过程中存在系统误差的问题,提出多星载光学传感器系统误差极大似然配准(maximum likehood registration,MLR)算法。通过一阶Taylor近似对非线性量测转换线性化,推导出目标状态的误差协方差与卫星轨道定向、姿态角测量和传感器测量等随机误差的关系,并基于视线交叉获得观测在状态空间中的近似投影,从而将MLR算法扩展到低轨星座多光学传感器的误差配准。通过引入各类测量误差的先验信息对目标状态的误差协方差进行修正,利用期望极大化迭代,实现了对系统误差的无偏有效估计及目标轨迹的融合估计。仿真验证了所提算法的有效性,且配准性能优越。  相似文献   

10.
卫星自主定轨中轨道摄动仿真   总被引:3,自引:1,他引:2  
本文针对组合大视场星敏感器卫星自主定轨方法,建立了地球非球形摄动下的广义卡尔曼滤波仿真模型,滤波过程采用了新的改进算法。通过计算机仿真,说明该自主定轨方法具有很高的位置、速度均方误差估计精度且算法是收敛的。计算给出了一日内的卫星轨道,反映了在地球非球形摄动下轨道的变化情况,且对轨道面的进动进行了计算。  相似文献   

11.
基于双星定位系统的近地卫星定轨精度仿真   总被引:7,自引:3,他引:7  
通过对测距误差特性的统计分析,建立了用于近地卫星精密定轨的距离和观测数据仿真方法,在此基础上构建了基于卫星动力学方程的精密定轨模型,设计了一种基于数值融合法的精密定轨改进算法和测距系统误差参数估计算法,并进行了六类仿真实验。仿真计算结果表明,基于一天的距离和观测数据仿真计算得到的近地卫星定轨精度可以达到15.98米,与利用其他精密定轨软件系统在相同仿真条件下得到的近地卫星定轨精度基本相当,但该算法避免求解状态转移矩阵,具有计算速度快,稳健性好等特点。  相似文献   

12.
基于星敏感器的航天器自主定轨,不同于基于GPS和跟踪与数据中继卫星系统的自主定轨,它是采用星敏感器对背景恒星的观测资料进行定轨.使用第一类无奇点根数状态微分方程,利用星敏感嚣视场中的多个恒星以及底片坐标,计算视场中心天球坐标的最优估计值,从而建立条件方程,采用最小二乘估计快速确定航天器的轨道.这种方法可以彻底摆脱航天器定轨对地面测控设备的依赖,实现真正的自主定轨.该方法的实现大大降低了航天任务的成本,同时,可缓解地面测控资源的紧张和冲突问题.  相似文献   

13.
针对线性化的测量模型和相对运动模型会导致仅测角相对导航星间距离不可观测的问题, 提出一种快速仅测角相对导航初始相对轨道确定(initial relative orbit determination, IROD)方法。首先, 采用相对轨道根数(relative orbit elements, ROE)建立非线性相对运动模型, 该模型可以将星间距离和相对轨道形状进行解耦。然后, 在线性理论获得的共线性解附近系统地改变星间距离大小, 并执行一系列最小二乘拟合, 随后采用二分法或牛顿迭代法快速在全局范围内找到最小拟合残差的最优解。最后, 通过搭建的半物理仿真平台对该方法在4种轨道场景中的性能进行仿真测试, 验证了所提方法的有效性。  相似文献   

14.
基于天基空间目标监视系统的定轨技术研究   总被引:2,自引:0,他引:2  
天基空间目标监视系统是进行空间目标监视与跟踪的重要发展方向,通过对美国即将运行的空间目标监视跟踪系统(SBSS)的分析,按照其设计思想和运行环境,仿真实现了SBSS对空间目标的定轨功能.设计了SBSS系统覆盖区域的简易算法,可以快速准确判断目标的可观测区域,为星座设计提供必要的支持.针对星上计算机能力有限的特点,提出了基于拉格朗日5点法求状态转移矩阵的定轨算法.仿真试验证明,SBSS系统对空间目标的覆盖区域比地基监视系统显著增加,同时,改进的定轨算法可显著缩短定轨时间、提高定轨精度,其中低轨道空间目标定轨误差10米,高轨道空间目标定轨误差500米左右.  相似文献   

15.
基于磁强计的卫星自主定轨算法   总被引:4,自引:1,他引:4  
为了降低自主导航的成本,针对近地轨道地磁场的特点,提出基于扩展卡尔曼滤波器的地磁导航算法,该算法综合IGRF模型建立了观测方程,根据地磁场的IGRF模型是基于地心固连坐标系的位置函数的特点,采用地心固连坐标系的卫星轨道动力学方程作为状态方程,构造出卫星地磁导航系统的导航模型。仿真研究结果表明,该算法的卫星地磁导航模型结构简单,描述能力更强,导航算法具有较好的稳定性和收敛性。  相似文献   

16.
The algorithm of autonomous orbit determination for the probe around small body is studied. In the algorithm,first, the observed images of the body are compared with its pre-computed model of the body to obtain the location of the limb features of the body in the inertial coordinate. Second, the information of the images and features in utilized to ob-, tain the position of the probe using the Levenberg-Marquardt algorithm. The position is then input to an extended Kalman filter which determines the real time orbit of the probe. Finally, considering the effective of the irregular small body shape perturbation and the small body model parameter error on the orbit determination precise, the procedure of autonomous orbit determination is validated using digital simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号