首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙全梅  冯建涛  韩东 《科学通报》2013,(24):2449-2465
基于微尺度(微/纳米)功能生物界面的成像与表征,集成并发展了以原子力显微镜、环境扫描电子显微镜等纳米源头技术为主导的,具有相互协同、验证、补充的多信息、多层次联合成像、表征及微加工设备功能群,实现了活体生物界面微尺度成像与表征方法学上的突破.进而,强调"医学功能界面"的概念,针对血管、骨和肿瘤相关医学功能界面,深入开展"微尺度构建-功能-力学耦合机制"研究.在此基础上,受血管内皮细胞为载体的血流/血液/血管相互作用功能界面的启发,实现黏附可控医学功能界面的仿生设计与制备;同时在中医"补气活血"理论的指导下,开辟"生物力药理学"这一新的交叉研究领域,强调生物力学因素在药理学研究和临床诊疗活动中的重要作用,建立可作为Biomarker另一类形式的临床样品微尺度力学参数指标,并倡导将"实验台/病床"双向引导的转化医学模式实施于诊断与治疗中.  相似文献   

2.
扫描探针显微镜(SPM)是微纳尺度形貌表征、物性测量及微纳操作的重要工具之一.传统的SPM只有单一探针,功能单一,多探针扫描探针显微镜(MP-SPM)的出现拓展了SPM的应用.MP-SPM的多个探针可充当精确定位的测量电极,从而提供了一种无损探测样品微纳尺度电学输运性质的方法;也可相当于多只独立活动的"手",相互配合实现复杂的纳米操作;还可以探针成像,成像信息作为其他探针操作的先验/反馈信息,从而提高操作的效率及准确性.本文首先介绍了MP-SPM的基本仪器结构,多探针距离缩小及位置标定方法,以及使用多探针技术测量材料电阻率的原理,接着总结了近年来MP-SPM在样品微纳尺度电学输运性质测量、微纳操作、并行成像与操作以及新型力学性质测量等方面的应用,最后探讨了该技术的前沿发展以及面临的机遇与挑战.  相似文献   

3.
<正>大自然是世界上最伟大的"设计师"和"工程师",经过数亿年的进化,自然界的生物通过自身功能结构的不断演变和优化,展示了独特的生物特性.出淤泥而不染的荷叶、阳光下五彩斑斓的彩蝶、擅长攀岩的壁虎脚、广角侦察的蜻蜓复眼,这一系列巧夺天工的设计和制造均出自大自然之手.人类对这些生物功能的好奇与神往,驱使研究者对这些功能独特的生物材料展开了细致的研究,并逐渐揭开了自然界生物材料神秘的"面纱",研究证实微纳尺度的多级结构被认为是产生上述独特功能的关键.如今,人们已经对各类生物材料的微纳结构与化学组成有了很深的认识,并试图通过微纳制造技术赋予人造材  相似文献   

4.
质子交换膜燃料电池是氢能利用的典型装置.在燃料电池的多尺度空间内发生着复杂的相变多相流、传热传质、电子质子传导、电化学反应等物理化学过程.上述过程对电池的性能、寿命及成本影响显著.近年来,随着先进实验手段、数值方法和计算资源的不断发展,研究者基于微纳米尺度研究燃料电池中发生的复杂多场耦合输运过程,不断发现新的微纳输运过程特征及耦合机制.本文回顾了近年来针对燃料电池关键组件(包括催化层、气体扩散层和气体通道)中发生的多场耦合输运过程的微纳尺度数值仿真工作.针对催化层,主要介绍了孔尺度数值仿真在预测有效传输系数、揭示传质阻力机理、查明微纳结构对反应输运过程影响方面的进展.针对扩散层,重点介绍了孔尺度仿真在研究扩散层气液两相流动及查明结构和润湿特性对液态水运动和分布影响的工作,还讨论了气体扩散层薄层多孔介质输运特性及典型代表单元是否成立.针对气体通道,着重介绍了通道中液态水运动及其对传质反应的影响.此外,还讨论了各组件跨尺度界面行为特性.最后,对采用微纳尺度数值方法研究燃料电池内多场耦合输运过程进行了总结和展望.  相似文献   

5.
蛋白质在纳米拓扑结构材料表面的吸附   总被引:3,自引:0,他引:3  
宋巍  陈红 《科学通报》2007,52(23):2701-2704
蛋白质在生物医用材料表面的吸附行为与材料的生物相容性密切相关. 长期以来, 大量的研究报道基本上都集中在生物医用材料表面化学组成对蛋白质吸附行为的影响, 而单独考察材料表面拓扑结构对蛋白质吸附行为影响的研究近年来才刚刚开始. 本文介绍了材料表面纳米拓扑结构对蛋白质吸附行为影响的研究进展. 所涉及的材料表面纳米尺度拓扑变量包括粗糙度、曲面曲率和特定几何形状 等, 而蛋白质的吸附行为则包括蛋白质吸附量、吸附后蛋白质的活性和吸附蛋白层的形貌等.  相似文献   

6.
张义青  王立峰  刘汝盟  蒋经农 《科学通报》2020,65(22):2371-2383
范德瓦耳斯力对纳米材料的物理、化学、电学和力学等特性有着非常重要的影响,甚至是决定性因素.范德瓦耳斯力是影响纳尺度结构本构关系、边界条件的重要因素,进而影响其线性振动的固有频率和非线性动力学行为.本文主要介绍范德瓦耳斯力对纳尺度结构的力学行为的影响,尤其关注范德瓦耳斯力对纳尺度结构振动特性影响的最新研究进展;并对由于范德瓦耳斯力的存在,纳尺度结构动力学所面临的问题及其发展趋势做了初步展望.  相似文献   

7.
采用喷砂-电刷镀相结合的方法,在碳钢表面制备出具有疏水耐腐蚀性能的微-纳复合结构.在最佳工艺参数下,获得接触角达到149.3°±2.5°的疏水表面.对喷砂-电刷镀相结合制备试样表面形貌、接触角以及耐腐蚀性进行表征.结果表明:喷砂与电刷镀结合工艺构筑的表面复合结构具有优异的疏水特性和良好的耐腐蚀性,且试样表面的平均腐蚀电流密度下降1~2个数量级,腐蚀电位也均有所提高.可见,通过在碳钢表面设计喷砂-电刷镀结合工艺构筑微-纳复合结构可以获得优异疏水耐腐蚀特性.  相似文献   

8.
针对典型金属材料钛,利用自主搭建的飞秒激光振镜扫描加工系统,加工了具有特定形貌特征的多尺度微纳结构.在此基础上对多尺度微纳结构的可逆润湿性及水下气泡操纵特性进行了实验探究,并从微观界面化学的角度阐释了可逆润湿性的调谐机理.研究结果表明:在飞秒激光烧蚀挤压作用下,钛表面诱导的多尺度微纳结构对原始表面的润湿性具有放大效应,固液接触角减小,水下气泡接触角增大;在辅助加热条件下,固液接触角增大,水下气泡接触角同时减小,气泡在表面完全铺展;随后将超疏水表面置于紫外灯下曝光,多尺度微纳结构上的液体接触角又开始减小,并最终实现了超疏水到超亲水性以及水下超亲气到超疏气的可逆调谐.另外,液体接触角与水下气泡接触角的可逆调谐特性呈现相反的变化趋势,这与固液气三相接触线的移动机制密切相关.本文对实现钛表面微纳结构设计与调控,提高具有可逆润湿性的金属表面在水下气泡操纵与收集,以及污水处理等领域的应用都具有重要意义.  相似文献   

9.
许多植物和动物的表面具有特殊的微纳尺度的结构,这些结构可以控制生物表面与水的相互作用,其中一些结构可以吸附水使其表面湿润.沙漠甲虫可以利用背部微米尺度的亲水和疏水区域的合理分布从潮湿空气中捕获水.  相似文献   

10.
现有微纳3D打印在实现多材料、宏/微跨尺度等方面面临诸多挑战性难题.本文提出了一种基于单平板电极电场驱动喷射沉积微纳3D打印新工艺,它不再将打印喷嘴作为电极,只需平板电极与高压电源正极(或负极)连接.通过理论分析和数值模拟,揭示了其成形机理;通过系统实验研究,验证了喷嘴(导电和非导电)、基材(导电和非导电)、打印材料(导电和非导电)任意组合稳定打印的有效性;进一步通过3个典型实验案例:线宽1.139μm的高宽比46.8:1微"墙"结构、高性能透明电极、精准可控的三维生物支架,证明了该方法在高分辨率、多材料和宏/微跨尺度打印方面独特的技术优势.该方法为微纳3D打印提供了一种低成本、高普适性的全新解决方案.  相似文献   

11.
正微纳结构化材料是指在功能材料中引入微纳米尺度结构,以提升功能材料性能和拓展其新功能.功能结构的微纳米化不仅意味着能源与原材料的节省,而且带来多功能的高度集成和生产成本的大大降低.实现材料微纳结构化的基础是先进的微纳米加工技术,从晶体管到集成电路,从微电子到微机械与微流体,从微米技术到纳米技术,微纳米加工技术获得  相似文献   

12.
张德远  李元月  韩鑫  李翔  陈华伟 《科学通报》2010,55(32):3122-3127
在对鲨鱼皮表面微米沟槽形貌进行高精度复制的同时, 实现纳米长链减阻界面的接枝合成, 是合成生物复制成形工艺应用于生物复合减阻结构高精度复制的新尝试. 以预处理的鲨鱼皮为微复制模板, 利用软刻工艺中的软模成型技术制备硅橡胶质弹性阴模板; 以水性环氧树脂与聚丙烯酰胺的接枝共聚物为基材, 对弹性阴模板进行复型翻模, 成形出一种兼具纳米长链减阻界面与逼真微米沟槽形貌的复合减阻鲨鱼皮. 复制精度分析结果表明, 该工艺可以实现生物减阻表面复杂三维微形貌的高精度复制成形. 减阻性能测试结果表明, 复合减阻鲨鱼皮具有优异的复合减阻效应, 在测试速度范围内, 最高减阻率达到24.6%.  相似文献   

13.
界面光蒸汽转化研究进展   总被引:1,自引:0,他引:1  
光热转化作为一种太阳能利用方式,由于其相对高效、低成本的特点,一直以来被广泛关注与研究.近年来,界面光蒸汽转化作为一种新型光热转化机制,借助微纳结构材料设计及光学、热学有效调控,将太阳能充分吸收并将能量转化局域到气-液界面,从而使得光-蒸汽能量转化效率有效提高,并因此被认为是一种极具前景的高效太阳能光热转化途径.本文介绍了界面光蒸汽转化的相关机制,包括光吸收、热管理和水输送,并展示了通过一系列微纳结构材料设计来提高其能量转化效率的最新研究进展;随后介绍了目前基于界面光蒸汽转化的一些主要应用;最后对界面光蒸汽转化的未来发展方向进行了展望.  相似文献   

14.
液滴动力学是多相流热物理学的重要基础研究方向.随着科学研究的逐步深入和工业技术的不断发展,人们发现液滴的界面可由多种物质分子组成且可出现复杂的结构,如石油工程中表面活性剂、固体颗粒等物质吸附于油水液滴界面,细胞等生物液滴由具有复杂分子组成和结构的膜包裹等.研究发现复杂的分子组成和结构使液滴界面具有剪切弹性、面积扩张弹性、抗弯特性等显著不同于普通液滴表面张力的力学性质,而复杂的界面力与流场黏性力、壁面物理化学吸附力等相互耦合导致液滴在流场中展现复杂的变形、运动、吸附等动力学行为.本文介绍了复杂液滴界面的力学性质及其模型描述,综述了近年来关于流场中复杂界面液滴的变形、运动、吸附行为的研究进展,并给出了后续研究的建议.  相似文献   

15.
陈绍锋  俞书宏 《科学通报》2009,54(8):1050-1054
总结了最近有关聚合物分子模板控制下的介观尺度的模拟生物矿化的研究进展. 在水溶液或混合溶剂中及气-液界面处, 利用聚合物控制矿化过程可以生成具有独特结构和形貌的矿物, 并且这些人工合成的矿物常常具有与天然矿物相似的微观结构.  相似文献   

16.
贾冬玲  王梦亚  李顺  黄建国 《科学通报》2014,(15):1369-1381
自然生物物质特殊的天然结构赋予其人工材料所难以比拟的优异功能,是构建人造功能纳米结构材料理想的模板物质.天然纤维素物质作为一种常见的天然高分子化合物,从宏观到分子层次的独特阶层结构及其在纳米层级上的多孔网状形貌可期赋予以其为模板而制备的有关人造材料独特的性质和功能.以纳米层级的精度和客体基质(无机和有机的)精确复制自然纤维素物质,能够最大限度地把其优异性能(如多孔隙结构和高内表面积)引入到相应的人造材料中去.应用表面溶胶-凝胶方法可以在纤维素物质的纳米纤维表面以纳米级别的厚度可控沉积金属氧化物凝胶薄膜,特定功能的客体物质能够进一步地表面组装于其上;继之以合适的方法去除纤维素模板成分即得到相应的具有纤维素物质阶层状结构和形貌的人造功能材料.本文简述了以此为基础设计和构建新型纳米结构材料(如金属氧化物及其复合纳米材料、聚合物纳米材料、硅和金属纳米材料等)的研究进展.以自然纤维素物质为模板或支架开发功能材料是一条获得新型功能纳米材料的简便、低成本和对环境友好的捷径.  相似文献   

17.
微纳机械谐振器因其具有超高的谐振频率、品质因子和灵敏度等优越特性,在物理传感、生物与化学检测、射频通信、能量收集等方面表现出了卓越的性能而备受关注,已成为当前微/纳机电系统领域的研究重点和热点之一.能量耗散一直以来都是制约微纳机械谐振器性能提升与应用发展的瓶颈问题,且耗散机制具有多样性、不确定性和尺度相关性.本文综述了微纳机械谐振器中的能量耗散机理与非线性阻尼效应的研究进展,主要针对热弹性阻尼、声子相互作用、黏性阻尼、支撑损耗、表面与界面损耗等内禀和外部耗散机制进行了综述,阐明了不同能量耗散的产生机理及影响规律,可为降低能量损耗和结构优化设计、提高谐振器件的品质因子和动态性能提供参考,对微纳机械谐振器的设计、制造及应用发展具有重要意义.  相似文献   

18.
利用催化化学气相沉积工艺在炭纤维(Cf)表面原位生长碳纳米管(CNT),经聚合物浸渍-热解(PIP)致密化后制备了CNT强化的Cf/Si C复合材料.结合微米压痕和纳米压痕测试方法在微米、纳米尺度研究了CNT强化的Cf/SiC复合材料界面、微区基体以及纤维-CNT-基体组元区域的力学响应机制.结果表明,CNT生长点具有较高的结合强度,界面脱黏出现在纤维/热解碳界面处,原位生长的CNT显著强化了纤维-基体界面结合强度.PIP工艺对CNT造成损伤,致使CNT强化的微区基体的模量和硬度下降,而CNT的拔出、裂纹桥连等行为阻碍了微区基体的裂纹扩展,进而提高了微区基体的破坏容忍度.理论计算结果显示,由CNT带来的韧性贡献约为310.8 J/m2.界面强化效应和微区基体裂纹扩展阻碍效应使纤维-CNT-基体组元的抗损伤能力得到了提高.利用微纳米测试连用手段可深入了解多级增强复合材料的纳米效应.此外,理论计算表明,CNT/基体的界面修饰及对CNT的有效保护会进一步提高CNT对微区基体的韧化效果.  相似文献   

19.
硅纳米孔柱阵列及其表面铜沉积   总被引:4,自引:0,他引:4  
富笑男  柴花斗  李新建 《科学通报》2005,50(16):1684-1688
采用水热腐蚀技术制备了硅纳米孔柱阵列(silicon nanoporous pillar array, Si-NPA), 并以此为衬底通过浸渍沉积制备出一种具有规则表面结构的铜/Si-NPA纳米复合薄膜(Cu/Si-NPA). 形貌和结构分析表明, Si-NPA是一个典型的硅微米/纳米结构复合体系, 它具有三个分明的结构层次, 即微米尺度的硅柱所组成的规则阵列、硅柱表面密集分布的纳米孔洞以及组成孔壁的硅纳米单晶颗粒. 研究发现, Cu/Si-NPA在形貌上保持了Si-NPA的柱状阵列特征, 薄膜中铜纳米颗粒的致密度随样品表面微区几何特征在柱顶区域和柱间低谷区域的不同而交替变化, 并形成一种准周期性结构. 上述实验现象被认为来源于铜原子的沉积速度对Si-NPA表面微区几何特征的选择性. Si-NPA可以成为合成具有某些特殊图案、结构和功能的金属/硅纳米复合体系的理想模板.  相似文献   

20.
材料与结构在微纳米尺度展现了许多不同于宏观尺度的新特征,微纳加工技术已经成为当前科学研究与工业开发的热门领域之一。笔者简要介绍了负折射材料和黑硅这两种微纳光学材料的制备及其特性,展示了微纳光学材料在新技术中的广阔前景和科技创新中的重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号