首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
正微纳结构化材料是指在功能材料中引入微纳米尺度结构,以提升功能材料性能和拓展其新功能.功能结构的微纳米化不仅意味着能源与原材料的节省,而且带来多功能的高度集成和生产成本的大大降低.实现材料微纳结构化的基础是先进的微纳米加工技术,从晶体管到集成电路,从微电子到微机械与微流体,从微米技术到纳米技术,微纳米加工技术获得  相似文献   

2.
最近10年里,科研人员研发了多种微纳尺度测温传感器,希望能够借此来精确测量细胞内的温度或温度分布,但由于单个细胞的诸多限制,这些细胞测温传感器也在不断发展完善.本文将综述近年来基于微纳材料与器件测量细胞温度的研究进展,重点介绍微纳热电偶的实时细胞测温技术,最后介绍此类传感器在药物筛选、疾病诊疗等领域中的应用,并对细胞测温技术的后续发展进行了展望.具体而言,本文指出微纳尺度的细胞测温传感器一般可以分为荧光式细胞温度测量法和探极式细胞温度测量法:荧光式细胞温度测量法主要有作为温度计的有机化合物、量子点、聚合物和生物分子;探极式细胞温度测量法主要有作为热探针的热电偶、铂电阻和碳纳米管.  相似文献   

3.
飞秒脉冲激光双光子微纳加工技术及其应用   总被引:2,自引:0,他引:2  
激光加工技术作为重要的先进制造技术之一已广泛应用于众多的工业制造领域. 利用激光直写技术进行材料加工时, 其所能达到的加工分辨率一直受到经典光学理论衍射极限的限制, 难于进行纳米尺度的加工. 飞秒脉冲激光的出现不仅为研究光与物质相互作用的超快过程提供了手段, 也为发展先进的微纳米加工技术提供了不可多得的光源. 近年来, 作为最新的激光加工技术之一的飞秒脉冲激光多光子微纳加工技术已成为国际上研究的热点. 该技术利用多光子效应和激光与物质作用的阈值效应, 成功地实现了纳米尺度的激光直写加工分辨率, 可望在功能性微纳器件制备等纳米技术领域发挥重要作用, 具有广阔的应用前景. 在2001年日本科学家利用飞秒脉冲激光双光子聚合技术首次突破衍射极限获得120 nm的加工分辨率后, 最近我国科学家实现了15 nm线宽的纳米尺度加工分辨率. 在利用多光束并行加工技术进行快速、大批量微纳结构加工的同时, 最新发展的多光束组合技术实现了多部件组合加工、一次成型, 解决了微尺度零部件组装难题, 为微纳尺度器件及微机电系统的开发提供了具有实用化前景的加工方法与途径. 利用飞秒脉冲激光双光子微纳加工技术的高精度、良好的空间分辨率和真三维加工能力的特点, 各国科学家制备出了各种微尺度光子学器件及微机电系统, 充分展示了该技术的应用前景. 随着对飞秒脉冲激光与物质相互作用机理、加工技术及相关材料技术的深入研究, 飞秒脉冲微纳加工技术必将获得快速发展, 并在先进纳米制造领域获得新的突破.  相似文献   

4.
随着微成形加工尺度范围的不断延伸,单纯依靠模具施加载荷(力场)的微成形技术难以突破成形尺度极限,因此迫切需要发展塑性微成形新原理、新方法和新工艺。针对微成形尺度效应这一基本科学问题,将电场、电磁场和超声波等特种能场应用到微成形技术中,利用特种能场与材料相互作用产生的物理效应,突破微成形尺度极限并扩大可加工材料的范围,从而实现跨尺度、多材料和可控微成形。特种能场微成形技术将极大地促进微成形技术的发展和应用,成为微/纳制造技术领域一个重要研究方向。  相似文献   

5.
特种能场微成形技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
随着微成形加工尺度范围的不断延伸,单纯依靠模具施加载荷(力场)的微成形技术难以突破成形尺度极限,因此迫切需要发展塑性微成形新原理、新方法和新工艺。针对微成形尺度效应这一基本科学问题,将电场、电磁场和超声波等特种能场应用到微成形技术中,利用特种能场与材料相互作用产生的物理效应,突破微成形尺度极限并扩大可加工材料的范围,从而实现跨尺度、多材料和可控微成形。特种能场微成形技术将极大地促进微成形技术的发展和应用,成为微/纳制造技术领域一个重要研究方向。  相似文献   

6.
现有微纳3D打印在实现多材料、宏/微跨尺度等方面面临诸多挑战性难题.本文提出了一种基于单平板电极电场驱动喷射沉积微纳3D打印新工艺,它不再将打印喷嘴作为电极,只需平板电极与高压电源正极(或负极)连接.通过理论分析和数值模拟,揭示了其成形机理;通过系统实验研究,验证了喷嘴(导电和非导电)、基材(导电和非导电)、打印材料(导电和非导电)任意组合稳定打印的有效性;进一步通过3个典型实验案例:线宽1.139μm的高宽比46.8:1微"墙"结构、高性能透明电极、精准可控的三维生物支架,证明了该方法在高分辨率、多材料和宏/微跨尺度打印方面独特的技术优势.该方法为微纳3D打印提供了一种低成本、高普适性的全新解决方案.  相似文献   

7.
功能生物界面由于其呈现出的独特功能引起研究者的极大兴趣,而微纳尺度结构是其关键结构基元,它们是界面特定功能的内在本质.然而直到目前描述刻画特定功能的整个形成过程依旧困难.越来越多的证据开始支持功能生物界面上的"微纳尺度构建-功能-力学耦合"的论点.本文重点介绍不同微纳尺度复合功能生物界面上的"形貌和力学耦合行为",以获得对微米纳米复合结构更好的理解.还介绍了自然界中生物体表气/液/固三相生物界面的"形貌-力学耦合行为",生物体内微纳尺度的"形貌-力学耦合行为",微纳尺度人工界面上活细胞的"形貌-力学耦合行为"和微纳尺度形貌、界面曲率与力学微环境的最新研究进展,并提出了一些新的概念,如"基于空间曲率的形貌-力学耦合行为"、"医学功能生物界面"和"生物力药理学"等.  相似文献   

8.
扫描探针显微镜(SPM)是微纳尺度形貌表征、物性测量及微纳操作的重要工具之一.传统的SPM只有单一探针,功能单一,多探针扫描探针显微镜(MP-SPM)的出现拓展了SPM的应用.MP-SPM的多个探针可充当精确定位的测量电极,从而提供了一种无损探测样品微纳尺度电学输运性质的方法;也可相当于多只独立活动的"手",相互配合实现复杂的纳米操作;还可以探针成像,成像信息作为其他探针操作的先验/反馈信息,从而提高操作的效率及准确性.本文首先介绍了MP-SPM的基本仪器结构,多探针距离缩小及位置标定方法,以及使用多探针技术测量材料电阻率的原理,接着总结了近年来MP-SPM在样品微纳尺度电学输运性质测量、微纳操作、并行成像与操作以及新型力学性质测量等方面的应用,最后探讨了该技术的前沿发展以及面临的机遇与挑战.  相似文献   

9.
封面说明     
在所有的纳微有序结构或表面图案结构的应用中,构筑方法是实现结构最终应用的重要前提条件.随着研究对有序结构材料性能及图案化尺寸、精度等要求的提高,人们不断改进,研发了一系列新的方法.纳、微尺度的微相分离、去润湿及水蒸气液滴模板等技术,溶剂辅助微成型技术,超临界流体技术,以及  相似文献   

10.
针对典型金属材料钛,利用自主搭建的飞秒激光振镜扫描加工系统,加工了具有特定形貌特征的多尺度微纳结构.在此基础上对多尺度微纳结构的可逆润湿性及水下气泡操纵特性进行了实验探究,并从微观界面化学的角度阐释了可逆润湿性的调谐机理.研究结果表明:在飞秒激光烧蚀挤压作用下,钛表面诱导的多尺度微纳结构对原始表面的润湿性具有放大效应,固液接触角减小,水下气泡接触角增大;在辅助加热条件下,固液接触角增大,水下气泡接触角同时减小,气泡在表面完全铺展;随后将超疏水表面置于紫外灯下曝光,多尺度微纳结构上的液体接触角又开始减小,并最终实现了超疏水到超亲水性以及水下超亲气到超疏气的可逆调谐.另外,液体接触角与水下气泡接触角的可逆调谐特性呈现相反的变化趋势,这与固液气三相接触线的移动机制密切相关.本文对实现钛表面微纳结构设计与调控,提高具有可逆润湿性的金属表面在水下气泡操纵与收集,以及污水处理等领域的应用都具有重要意义.  相似文献   

11.
微纳机械谐振器因其具有超高的谐振频率、品质因子和灵敏度等优越特性,在物理传感、生物与化学检测、射频通信、能量收集等方面表现出了卓越的性能而备受关注,已成为当前微/纳机电系统领域的研究重点和热点之一.能量耗散一直以来都是制约微纳机械谐振器性能提升与应用发展的瓶颈问题,且耗散机制具有多样性、不确定性和尺度相关性.本文综述了微纳机械谐振器中的能量耗散机理与非线性阻尼效应的研究进展,主要针对热弹性阻尼、声子相互作用、黏性阻尼、支撑损耗、表面与界面损耗等内禀和外部耗散机制进行了综述,阐明了不同能量耗散的产生机理及影响规律,可为降低能量损耗和结构优化设计、提高谐振器件的品质因子和动态性能提供参考,对微纳机械谐振器的设计、制造及应用发展具有重要意义.  相似文献   

12.
多物理场驱动微纳马达是一种介于纳米和微米尺度的致动器,它能够将化学能、磁能、电能、光能、热能以及超声能转换为机械能,从而实现其在靶向药物运输、粒子离散、生物传感、仿生制造以及环境修复等领域的应用.本文评述了近年来我国微纳马达运动控制领域重要的研究进展和代表性成果,以及微纳马达在各领域的应用研究,阐述了微纳马达当前存在的关键性问题,并探讨了微纳马达未来的应用前景及发展方向和趋势,为深入开展微纳马达的科学研究和工程化应用提供一定的借鉴和参考.  相似文献   

13.
非线性超声技术由于能够克服传统线性超声的不足,对于微纳尺度缺陷(如位错、微裂纹等)较为敏感,受到研究者的广泛关注.本文介绍了非线性超声技术检测材料损伤的基本原理;对传播过程中非线性超声波与材料微观结构相互作用的理论研究以及非线性超声技术检测、评估材料损伤的实验研究进展进行了综述;最后基于非线性超声损伤检测研究的现状对该技术进一步发展进行了展望.  相似文献   

14.
结合薄膜光学、导波光学和衍射光学制备的亚波长微纳结构器件,具备制作新型功能光学元件的潜力,是当今光学领域备受关注的研究热点。笔者介绍了亚波长导模共振结构应用于可调谐滤波器、彩色图像再现,及其周期性孔阵列结构制备的可调谐滤波器。这些研究展示了微纳米尺度的光学结构不同于宏观尺度的新特征,及其在新技术的广阔前景和科技创新中的重要作用。  相似文献   

15.
质子交换膜燃料电池是氢能利用的典型装置.在燃料电池的多尺度空间内发生着复杂的相变多相流、传热传质、电子质子传导、电化学反应等物理化学过程.上述过程对电池的性能、寿命及成本影响显著.近年来,随着先进实验手段、数值方法和计算资源的不断发展,研究者基于微纳米尺度研究燃料电池中发生的复杂多场耦合输运过程,不断发现新的微纳输运过程特征及耦合机制.本文回顾了近年来针对燃料电池关键组件(包括催化层、气体扩散层和气体通道)中发生的多场耦合输运过程的微纳尺度数值仿真工作.针对催化层,主要介绍了孔尺度数值仿真在预测有效传输系数、揭示传质阻力机理、查明微纳结构对反应输运过程影响方面的进展.针对扩散层,重点介绍了孔尺度仿真在研究扩散层气液两相流动及查明结构和润湿特性对液态水运动和分布影响的工作,还讨论了气体扩散层薄层多孔介质输运特性及典型代表单元是否成立.针对气体通道,着重介绍了通道中液态水运动及其对传质反应的影响.此外,还讨论了各组件跨尺度界面行为特性.最后,对采用微纳尺度数值方法研究燃料电池内多场耦合输运过程进行了总结和展望.  相似文献   

16.
曹启韬  唐水晶  陈豪敬  肖云峰 《科学通报》2020,65(27):3028-3042
光学微腔能够同时在空间和时间维度上约束光场,从而增强光与物质相互作用,被广泛用于基础光物理和光子学应用研究.其中,回音壁光学微腔具有超高的品质因子和很小的模式体积,是当前微腔研究的学术前沿.随着光学材料微纳加工和半导体芯片制备工艺的发展,超高品质因子回音壁光学微腔研究的重要趋势之一是片上集成化.例如,超高品质因子片上光学微腔已经在光子学芯片、集成光计算、片上光互联、光学精密测量等众多领域发挥着重要作用.本文重点介绍了片上回音壁光学微腔在微型激光器、非线性光学、集成光子学回路和高灵敏光学传感等研究中的基本原理、发展历程和最新进展;进一步展望了超高品质因子片上微腔光子学未来研究的发展方向.  相似文献   

17.
封面说明     
<正>飞秒激光微纳加工技术具有三维可设计制造、高精度、高空间分辨率、材料适用范围广等优势,在三维微纳结构制备领域显示了巨大的应用前景.近年来,随着国内外对超短脉冲激光与物质相互作用规律的深入研究,超快激光微纳加工技术不断进步,其应用领域拓展至微光学、微传感器、微电子学、微机械、微流控及仿生微纳制造等多个方向.借助超快激光微纳加工技术,一系列常规加工手段无法制备的复杂微纳结构被成  相似文献   

18.
胡志宇  罗希  林聪  曹毅 《自然杂志》2014,36(1):42-50
随着社会的发展,世界能源消耗的增长与资源匮乏之间的矛盾日趋尖锐,因此传统能源利用技术的革新成为备受关注的问题。纳能源技术是采用纳米材料、纳微加工等高新技术手段发展出来的一种全新的能源技术,其有可能完全突破传统的宏观尺度能源系统(如内燃机等)所面临的低能效、高污染、大体积等一系列难以克服的原理性技术困难。上海大学纳微能源研究所作为一个多学科交叉平台,利用其交叉学科的优势,提出纳米尺度热机的概念,将微机电系统(microelectromechanical systems, MEMS)技术制备的传统微型热电器件与催化燃烧相结合,在纳米尺度下催化剂将化学能高效地转化为热能,形成局部温度差,再结合热电器件,在提高催化剂活性和稳定性的同时能够将所得热能转化为电能,实现其在微型电源领域的应用。  相似文献   

19.
随着社会的发展,世界能源消耗的增长与资源匮乏之间的矛盾日趋尖锐,因此传统能源利用技术的革新成为备受关注的问题。纳能源技术是采用纳米材料、纳微加工等高新技术手段发展出来的一种全新的能源技术,其有可能完全突破传统的宏观尺度能源系统(如内燃机等)所面临的低能效、高污染、大体积等一系列难以克服的原理性技术困难。上海大学纳微能源研究所作为一个多学科交叉平台,利用其交叉学科的优势,提出纳米尺度热机的概念,将微机电系统(microelectromechanicalsystems,MEMS)技术制备的传统微型热电器件与催化燃烧相结合,在纳米尺度下催化剂将化学能高效地转化为热能,形成局部温度差,再结合热电器件,在提高催化剂活性和稳定性的同时能够将所得热能转化为电能,实现其在微型电源领域的应用。  相似文献   

20.
<正>表面等离激元(SPP)是存在金属与介质界面的一类特殊的电磁波模式,它具有比普通空间光更强更局域的光场和更短的波长,从而被广泛关注.特别是随着微纳加工技术的进步,人们可以加工出各种复杂的金属纳米结构以有效控制这类特殊的电磁模式,这给人们提供了在突破衍射极限的微纳尺度下操作光场的能力,开启了人类对光子设计与利用的新天地.近年来,基于等离激元矢量特性的研究将微纳光子设计带到了前所未有的高度.依赖于结构特征的矢量光场  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号