首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
汶川地震的同震变形量及其分布是揭示汶川地震孕育机制、破裂扩展特征的重要科学依据.已有研究显示汶川地震致使龙门山中央断裂中-北段和前山断裂中段分别产生长度为240和90km的地表破裂带.在对北川县沙坝村一带地质地貌调查和广泛走访老乡,获得震前地貌、建筑物信息和照片实证的基础上,对主要的地物标志、被断错建筑物位差等进行全站仪和差分GPS实测,得到沙坝村邹家院一带最大垂直位移为(9±0.5)m,右旋位移量约为(2±0.5)m.尽管沙坝村一带地表表现为正断层,但与其他地段的同震变形一致,表现为断层西北盘上升,不存在一般正断层上盘重力下滑迹象;这些说明,(9±0.5)m的位移值应为汶川5.12地震地表最大同震垂直位移量.  相似文献   

2.
汶川MS8地震最大地表同震垂直位移量及其地表变形样式   总被引:1,自引:0,他引:1  
汶川地震的同震变形量及其分布是揭示汶川地震孕育机制、破裂扩展特征的重要科学依据. 已有研究显示汶川地震致使龙门山中央断裂中-北段和前山断裂中段分别产生长度为240和90 km的地表破裂带. 在对北川县沙坝村一带地质地貌调查和广泛走访老乡, 获得震前地貌、建筑物信息和照片实证的基础上, 对主要的地物标志、被断错建筑物位差等进行全站仪和差分GPS实测, 得到沙坝村邹家院一带最大垂直位移为(9±0.5) m, 右旋位移量约为(2±0.5) m. 尽管沙坝村一带地表表现为正断层, 但与其他地段的同震变形一致, 表现为断层西北盘上升, 不存在一般正断层上盘重力下滑迹象; 这些说明, (9±0.5) m的位移值应为汶川5.12地震地表最大同震垂直位移量.  相似文献   

3.
利用有限元数值模拟方法,以汶川地震和芦山地震的野外地质调查、同震位移和汶川地震前形变观测结果为约束,分析研究了高海拔地形蓄积的重力位能作用下,中地壳低速层的存在以及中央断裂和前山断裂同时破裂的条件下汶川地震的发生对龙门山南段孕震环境的影响.模拟计算结果显示,在一定的模型壳幔介质属性及空间结构下,龙门山断裂带西侧低速层的存在、青藏高原向四川盆地过渡带的地形特征以及汶川地震时中央断裂和前山断裂同时破裂的条件,是控制汶川地震对芦山地震孕震环境影响程度的重要因素.其中,地形和低速层对汶川地震引发的芦山地震孕震环境库仑破裂应力变化的影响最为显著,在所选剖面的北东段,地形特征的影响更为明显,而汶川地震双破裂面的影响则较小.  相似文献   

4.
高频GPS测定的汶川Ms8.0级地震震时近场地表变形过程   总被引:9,自引:0,他引:9  
以龙门山断裂带下盘的四川GPS连续观测网高频(1 Hz)GPS观测资料为基础, 得出了2008年5月12日发生在四川汶川的Ms8.0级大地震的震时近场地表形变过程. 结果显示: 地震在近场产生的最大形变量明显大于震后位移, 破裂带北段各站水平分量震时先向震中方向运动, 后转折垂直于破裂带方向运动, 南段各站水平分量形变相对较小且基本为可恢复性变形. 各站垂向均先下沉, 然后呈周期性上下起伏波动. 将高频GPS所得位移与强震仪所得结果进行对比分析, 发现震动初期两者具有较好的一致性, 但中后期虽然相位基本同步, 但其振幅存在10 cm左右的差异, 其具体原因还需进一步研究论证. 此次记录到的汶川大地震近场地表变形过程, 可为进一步研究地表破裂过程和地震波的传播方式提供非常有价值的基础资料.  相似文献   

5.
2008年汶川8.0级特大地震孕育和发生的多单元组合模式   总被引:13,自引:0,他引:13  
2008年5月12日四川省汶川县境内发生8.0级特大地震. 这次逆冲型地震发生在大陆内部的高角度逆冲断裂之上, 与有历史记载以来所发生的逆冲型特大地震是不同的. 通过对汶川地震的地表破裂、震源机制、余震定位、地震破裂过程、同震地壳形变、强地面运动等的综合研究, 认为汶川特大地震的孕育和发生是3个地质单元共同作用的结果. 川西高原作为变形单元震前发生长期持续的变形, 并且将变形转换为积累在龙门山断裂带的应力; 龙门山断裂带作为闭锁单元震前变形缓慢但积累很大的应力, 当其超过断裂的摩擦强度或岩体的破裂强度时就突发破裂, 形成地震, 释放出巨大的能量; 四川盆地作为支撑单元对川西高原和龙门山的向东运动产生阻挡, 是汶川地震孕育不可缺少的元素. 汶川地震的孕育和发生可以用多单元组合模型来理解.  相似文献   

6.
2022年四川泸定6.8级地震发生于鲜水河断裂磨西段,为揭示此次地震的同震形变特征,收集了震中200 km范围内的连续全球定位系统(global positioning system, GPS)测站和震中50 km范围内的强震动数据,进行了高精度处理以提取测站的同震水平位移.此外,还收集了覆盖震中区域的Sentinel和ALOS-2降轨数据,通过干涉差分技术处理并获得了卫星视线向同震形变场.结果显示:水平同震形变呈四象限分布,表明泸定地震的震源机制为左旋走滑;距震中16 km的强震动台站记录到了明显的位移波形,其峰值位移达14 cm、永久变形约为12 cm;合成孔径雷达干涉测量(interferometric synthetic aperture radar, InSAR)显示断层近场30 km×30 km区域具有明显的同震变形,断层西侧卫星视线向最大位移达15 cm,挖角乡附近的局部形变超过15 cm;野外调查推测在“二台子-爱国村”间的断层段发育地表破裂,但从InSAR形变场上难以判定,同震是否破裂到地表仍需详细的野外考察予以确定.反演了川滇块体北东边界主干断裂在泸定地震前的闭锁分...  相似文献   

7.
机载激光雷达技术与海原断裂带的精细地貌定量化研究   总被引:7,自引:0,他引:7  
高分辨率、高精度的地形资料是活动断裂研究的基础,机载激光雷达测距(light detection and ranging,LiDAR)系统的出现为精确高效获取精细地貌形态提供了新的解决方案.本文基于海原断裂带机载LiDAR扫描项目所获得的地形数据,发现1920年海原地震在哨马饮区段的同震位移,并测量得到水平同震位移约为8.6 m,垂直同震位移约为0.8 m.另外,还得到哨马饮冲沟累积位移量精确值,结合前人测定的阶地年龄,估算海原断层全新世以来的水平方向滑动速率为4.0±1.0 mm/a,抬升的垂向速率下限为0.4±0.1 mm/a.海原断裂带机载LiDAR实验表明,基于LiDAR数据的精细地貌定量化研究可以准确获取同震位移和累计位移,减少滑动速率的不确定性,得到之前难以计算的垂直运动速率,从而加深对断裂带地震活动性和复发周期的认识,理解全新世以来的断层活动特性.  相似文献   

8.
四川芦山7.0级强震:一次典型的盲逆断层型地震   总被引:1,自引:0,他引:1  
芦山地震区发育着龙门山推覆构造带南段大邑隐伏断裂、双石-大川断裂、盐井-五龙断裂、耿达-陇东断裂等活动断层.地震现场应急科学考察表明,沿这些活动断层及其邻近地段没有发现明显的地震地表破裂带,地表可见到一些脆性水泥路面挤压破裂现象,说明在双石镇、太平镇、龙门乡、隆兴乡等地存在着NW-SE向局部的地壳缩短,结合余震的空间分布特征、震源机制解等资料,推测芦山地震属典型的盲逆断层型地震.龙门山推覆构造带尚未发生历史地震破裂的地震空段应引起有关部门高度重视.  相似文献   

9.
张北-尚义地震同震形变场雷达差分干涉测量   总被引:64,自引:6,他引:58  
王超  刘智  张红  单新建 《科学通报》2000,45(23):2550-2554
用合成孔径雷达差分干涉测量技术获取1998年1月10日张北-尚义地震(Ms = 6.2级)的同震形变图, 利用地震前后欧洲遥感卫星1和2号合成孔径雷达(ERS-1/2 SAR)的三景数据做重复轨道差分处理得到震前震后的干涉纹图. 由视向形变图可知, 此次地震造成隆起形变, 形变中心位于114°20′E, 40°57′N, 最大视向位移量达25 cm, 形变集中在300 km2范围内, 根据地震同震形变场的空间分布特征分析了震源机理和孕震构造.  相似文献   

10.
何宏林  魏占玉  石峰  孙浩越 《科学通报》2010,55(17):1702-1709
汶川地震破裂带上的近场震后变形, 是一种震后的蠕滑行为, 而且大部分表现为与同震滑移的方向相反. 地震断层的活动通常划分成震前、同震、震后和震间4个阶段, 反映了一次地震从孕育、发生到结束的整个演化过程, 而不同活动阶段的变形特征反映出不同的应力状态和力学性质. 汶川地震沿龙门山断裂带形成了两条长分别为250和72 km的地表破裂带. 为了了解汶川地震地表破裂带的震后变形特征, 对中央主破裂带上人为破坏较轻的断层崖或断层挠曲崖进行反复测量, 结果显示在19个观测点中, 13个观测点(68%)的断层崖或断层挠曲崖的高度(垂直同震位移)震后降低回落, 平均降低了9.7%; 5个观测点(26%)没有发生变化; 1个观测点(6%)的在震后继续抬升, 抬升了12.8%, 而且该观测点位于中央主破裂带的南西端部. 尽管这种变化中存在着上冲断层盘虚假抬升后压实回落的影响, 但主要是沿汶川地震破裂带发生的震后滑移造成的, 而且大部分震后滑移(68%)与同震滑移的方向相反. 除破裂端部存在同震位移亏损, 弹性能释放不完全外, 其他部位同震位移要么与震间累积达到平衡, 要么过冲产生能量亏损, 揭示了汶川地震的能量可能基本释放完全, 发生7级以上强余震的可能性不大. 此外, 这种震后变形特征还告诉我们, 在进行活动断层构造地貌研究时, 特别是通过断层崖高度(或其他水平位错量)判断断层运动速率和估计古地震事件大小时, 除侵蚀作用产生的误差外, 还需要考虑10%左右来自震后滑移的系统误差.  相似文献   

11.
王敏  李强  王凡  张锐  王阎昭  师宏波  张培震  沈正康 《科学通报》2011,56(20):1593-1596
据覆盖日本全境的GEONET 网络GPS 观测资料显示, 2011 年3 月11 日的日本宫城MW9.0 级地震造成日本半岛向东移动, 最大达到了5.3 m. 利用国家重大科技基础设施项目“中国大陆构造环境监测网络”的GPS 观测资料, 分析此次地震对中国大陆构造形变场的同震影响,结果显示, 地震造成我国东北和华北地区产生毫米至厘米级的同震水平位移, 最大值为35 mm.通过应变分析发现, 地震导致东北和华北地区一系列北北东走向的断裂产生了不同程度的张性应变. 虽然在东北地区张性应变相对比较明显, 最大处约为40 nano-strain, 但对断裂带的静态库仑应力加载有限, 不会对区域地震活动产生大的影响.  相似文献   

12.
在龙门山中、北段发生汶川Ms8.0级特大地震5年之后,2013年4月20日在龙门山南段发生了芦山Ms7.0级地震。基于芦山地震基本特征及其所处的龙门山断裂带的构造特征、地貌水系特征、重力异常分布特征,分析芦山地震发生的区域地质背景,并探讨2013年芦山地震与2008年汶川地震之间的关系。初步获得以下认识:①芦山地震并不是汶川地震的余震,它们是两次独立的地震,芦山地震与汶川地震具有一定的关联性,汶川地震可能促进了芦山地震的发生;②下地壳流向上仰冲可能是芦山地震和汶川地震共同的成因机制,这一成因机制可以很好地解释汶川地震与芦山地震之间的空区;③龙门山南段在山前发育多条断裂和褶皱带,使得这一地区由北西向南东的应力在山前多个断裂和褶皱带得到一定的释放,因此不具备发生类似汶川地震这样特大地震的构造条件。  相似文献   

13.
使用国家地震台网固定台站和区域流动地震台站资料,通过对最长达18年记录开展的剪切波分裂分析,得到青藏高原东缘构造域(包括龙门山断裂带)的上地壳各向异性空间分布和时间变化特征.通过快剪切波(快波)偏振和慢剪切波(慢波)时间延迟参数,获得了快波偏振的分区分布特征和汶川地震前后不同分区统计特征的时间变化.剪切波分裂参数受到应力场和断裂构造的影响,块体边界或断裂附近的快波偏振特征比块体内部更为复杂,导致一些分区显示两个优势方向.在汶川MS8.0地震前后,可以观察到一些台站或区域的剪切波分裂参数的变化,既有快波偏振方向的改变,也有慢波时间延迟的变化.地震前后有明显变化的台站,基本符合两种情况:一是震中距较近;二是处于大的断裂或构造边界附近.研究发现,汶川地震前后,龙门山断裂带区域的慢波时间延迟的降幅显著大于周边区域;龙门山断裂带北段的慢波时间延迟降幅,大于龙门山断裂带中段,大于龙门山断裂带南端与鲜水河断裂、安宁河断裂的交汇区,这反映了地壳应力及介质物性状态的变化.通过分析剪切波分裂参数,推断出龙门山断裂带域及周边区域的主压应力分布.本文同时还分析了芦山地震前后剪切波分裂特征的变化.研究认为,利用地震剪切波特性监测应力变化,进而可应用于地震应力预测研究.需要注意是,不同的构造部位对应力变化有不同的响应.  相似文献   

14.
2015年4月25日,在印度板块与欧亚板块交界区的喜马拉雅地震带上发生了尼泊尔MS 8.1级大地震.震前GPS速度场和应变率场显示,喜马拉雅地震带整体表现为15.94±1.82 mm/a的压缩特征,同时还具有分段活动特征.此次地震发生在速度场顺时针旋转和逆时针旋转的分界带,该处最大主压应变率的量值在喜马拉雅地震带并非最大.GPS观测的同震位移场揭示了尼泊尔MS 8.1级地震引起的地壳变形特征,分别有9和6个测站观测到明显的水平向和垂向同震位移,其水平分量的运动方向整体表现为南向运动,位于震中东南侧的3个测站垂直分量表现为上升,其余测站为下降.中国境内距离震中最近的5个测站的垂向同震位移显示,此次地震造成珠穆朗玛峰的沉降量约为4mm.依据GPS观测到的同震位移场,利用非负最小二乘方法反演震源断层面上的滑动分布.反演结果表明最大滑动量为6.84 m,滑动量较大的区域分布在加德满都附近及其以北区域的下方,这可能是造成加德满都地区具有较大破坏的原因之一,该滑动分布模型能够很好地解释GPS观测到的同震位移.利用此滑动分布模型计算的地震矩为8.21×1020 N m,对应的矩震级为MW7.9.  相似文献   

15.
据尼泊尔境内的连续GPS观测资料显示,2015年4月25日的尼泊尔M_w7.8级地震造成尼泊尔向南移动,最大位移量达到了1.88 m.利用国家重大科技基础设施项目"中国大陆构造环境监测网络"、中国气象局中日合作JICA项目及加州理工学院在尼泊尔境内所建的连续GPS观测资料,分析了此次地震对中国大陆构造形变场的震时动态响应及同震影响.结果显示,地震造成中国西藏地区毫米至厘米级的同震水平位移,最大值在震中北东方向,震中距220 km的珠峰站,约为30 mm,波及范围远至1500 km之外的高原东北部的祁连山地区.1 Hz的高频GPS数据分析表明,震中距1200 km内的站点记录了弹性震波和永久变形的叠加和破裂方向效应等丰富信息.通过分析中国境内地震活动频度并对比2011年日本宫城地震发现,本次尼泊尔地震并未造成中国境内微震活动显著增加,同震过程对中国西藏部分地区、川滇地区及南北地震带断裂带的应力扰动和构造加载有限,与其震级相对较小有关.  相似文献   

16.
以中国的连续GPS观测资料为基础, 结合其他全球GPS观测资料, 计算了2004年12月和2005年3月发生在苏门达腊岛9.3和8.7级巨大地震的同震位移场. 2004年地震的同震永久位移的影响范围达6000~7000 km, 并呈现波状起伏的特征. 2005年地震的同震位移主要局限在震中区附近, 可能只是2004年地震诱发的强余震.  相似文献   

17.
2022年1月8日青海门源盆地北缘发生Mw 6.6地震,震源机制反演表明此次地震属于左旋走滑事件.震后10 d内,近600个余震被检测到,最大余震为M 5.1级.此次地震发生在祁连-海原左旋走滑断裂系统的冷龙岭段,该断裂段全长127 km,由古地震研究确定的特征地震大小在Mw 7.3~7.5.为了更为全面理解此次地震的震源机制以及当地孕震模式,我们分析了地震波形,获取了主震和17个Ms≥3.0余震的震源机制与矩心深度.利用升、降轨道SAR数据获取的像元偏移数据和同震干涉相位(interferometric synthetic aperture radar, InSAR)确定了两条地表破裂带的位置,并利用InSAR数据反演了主震的滑动模型.研究发现,此次地震破裂带对应于冷龙岭断裂西段和托莱山断裂的阶区,发震断层存在3个形变中心,最大滑动量约为4 m,出现在冷龙岭断裂上,形变中心深度为4 km.滑动模型显示释放了累计能量~1.58×1019Nm,约合矩震级Mw 6.68,与本文利用地震学方法得到的Mw 6.58接近.结合区域活动构造特征、1986和2016年两次门源地...  相似文献   

18.
2015年尼泊尔M w7.9和M w7.3级地震致灾范围包括尼泊尔、印度北部、巴基斯坦、孟加拉和中国藏南地区,地震应变应力调整将对震区和邻区的地震活动产生不同程度的影响.尼泊尔境内的GPS连续观测数据、"中国大陆构造环境监测网络"GPS基准站和地震应急流动站观测数据计算结果揭示了尼泊尔地震的静态和动态同震形变场.对M w7.9级地震,尼泊尔境内近场静态同震GPS水平位移最大为1.89 m,距震中100~400 km的中国藏南地区观测到几毫米到几十厘米的静态水平位移,毗邻尼泊尔的聂拉木县最大形变54.0 cm.M w7.3级地震静态同震形变最大为2 cm,局限在震中附近200 km范围内.距震中约2000 km内的GPS基准站均记录到M w7.9大震明显的动态形变信号,高频GPS动态形变幅度与地震破裂方向有关,位于破裂方向上的测站动态形变幅度明显大于其他方向的测站.用弹性半空间位错模型正演模拟了震区和青藏高原南部格网点上的同震形变,并分析了地震应变影响,认为尼泊尔地震对中国藏南地区产生一定程度的拉张型应力变化,需要持续关注.  相似文献   

19.
5.12汶川大地震发生后,人们十分关心一个问题:位于龙门山附近的成都市区距离震中比北川、青川近得多,为什么几乎毫发未伤? 这首先要从发震构造说起.成都市区在成都平原东缘,虽然平原内也有两条小断层,但它们和龙门山断裂带没有直接连通的关系,不会因为龙门山中发生地震而直接受影响.  相似文献   

20.
2013年4月20日,我国雅安芦山地区发生7.0级地震,这是继汶川地震后,四川境内发生的又一次大地震,引起了民众的广泛关注.为此,本刊记者采访了著名地球物理学家、中国科学院院士、发展中国家科学院院士陈运泰教授,请他为大家解读雅安芦山地震引人关注的问题.问:汶川大地震后,时隔5年,雅安芦山地区再次发生地震,请问四川为什么地震多发? 陈院士:不单是四川,云南、青藏高原等地都是地震活动的多发地区.四川处在青藏高原的东北,以龙门山为例:龙门山东面是成都平原,西面是松潘-甘孜地块.龙门山之所以会隆起,是因为印度板块朝北偏东的方向相对于欧亚板块运动.这个运动造成了喜马拉雅山,造成了青藏高原.当喜马拉雅山升高到现在的海拨8000多米,当青藏高原升高到现在的五六千米的时候,便逐渐地慢了下来,不再像原来那样快地隆升.可是,一方面,印度板块还继续向北偏东的方向运动;另一方面,印度板块和喜马拉雅山下地壳中可以缓慢流动的物质在北面受到昆仑山断裂带的阻拦,所以只能被迫改变方向,向东偏南方向运动,并且带动其上的地块向东偏南方向运动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号