首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
在文献[1]中,Ringel定义了Finitary环A上的Hall代数(?)(A).它是以{u_[M]}[M]为基的自由Abel群,其中[M]表示有限A模M的同构类,(?)(A)的定义如下:u_[N_1]×u_[N_2]=sum from [M] ((F_(N_1)~M)×(N_2)×u_[M])由于A是Finitary环,上式右端是有限和.这里F_(N_1N_2)~M是M的适合L(?)N_2且M/L(?)N_1的子模L的个数.Hall代数(?)(A)是有单位元1=u_[0]的结合环.为简便,总假定A是有限域k上的有限维代数.所有的有限A模构成的子范畴记为mod-A.由文献[1~3]可知,Dynkin型或仿射型遗传代数的Hall代数与相应的Kac-Moody Lie代数及其量子包络代数均有深刻的内在联系,而Hall多项式在1处的赋值恰好给出了对应Lie代数的结构系数.在文献[2]中Ringel猜测:任意有限表示型k-代数总存在Hall多项式.Ringel证明了表示直向代数有Hall多项式.Guo等人证明了mod-A中没有短圈的代数A有Hall多项式.在这篇短文中,我们证明了mod_pA中没有短链的有限表示型自入射代数A存在Hall多项式.  相似文献   

2.
彭联刚 《科学通报》1991,36(4):247-247
设A是代数闭域k上基本、连通的有限维遗传代数,_AT是倾斜左A-模,B=End_AT是倾斜代数。我们熟知,当A是tame型时,_AT有预投射直和项和预入射直和项当且仅当B是有限表示型代数(见文献[1]命题5.7或文献[2]中4.1)。但当A是一般遗传代数时,是否有相应的结果,在此之前,一直是公开问题(见文献[1]中5.7)。本文给出了这个问题的完全刻化。得到  相似文献   

3.
唐立忠 《科学通报》1994,39(5):401-401
在文献[1]中讨论了几何码的主猜想,证明了当基域的元素个数足够大时,对亏格小于3的曲线上的码,主猜想为真.本文将讨论超椭圆曲线上的主猜想问题.1 一些概念在此,我们回忆一下代数几何的有关概念,F_q表示q-元有限域,X是定义在F_q上的代数曲线,X(F_q)是X在F_q上的有理点集,F_q(X)表示X在F_q上的函数域.Div(X)是X的除子群.对X在F_q上的有理除子D,Supp(D)表示D的支点集,L(D)={f∈F_q(X)~*|div(f) D≥0}∪{0}是F_q向量空间,1(D)=dimL(D).对两个除子D和D’,D~D’表示它们线性等  相似文献   

4.
Hopf余模余代数的对偶定理   总被引:3,自引:1,他引:3  
王栓宏 《科学通报》1994,39(4):298-298
Blattner和Montgomery在文献[1]中讨论了Hopf模代数的对偶定理.此定理概括了VonNeumann代数的交叉余积的对偶.早在1977年,Molnar在文献[3]中给出了Hopf模代数的对偶概念Hopf余模余代数,并讨论了其性质.但关于Hopf余模余代数的对偶定理至今未见,它具有与文献[2]同等的意义.本文将通过定义左(右)Smash余积,在Hopf代数H有限维时,给出了这一对偶定理:若H~*在H×_H~*~LH~*上的右余作用为右强余内的,那么(C×H)×H~*≈C(?)(H×H~*).  相似文献   

5.
章璞 《科学通报》1997,42(5):471-474
设A是域k上的有限维代数,A~e是A的包络代数,即A~e=A(?)A~(op),其中A~(op)是A的反代数.任一A-A双模M自然地视为左A~e-模:(a(?)b’)m:=amb,(?)a(?)b’∈A~e,m∈M.由此得到左 A~e-模A并且有如下维数公式(参见文献[1]):proj.dim.A~eA=gl.dim.A.根据Cartan-Eilenberg公式,A的第i次Hochschild同调群H_i(A)等同于向量空间H_i(A)(?)Ext_(A~e)~i( A,D(A))(?)Tor~A~e_i( A,A),其中D=Horm_k(-,k)为对偶函子. 关于Hochschild同调群和上同调群的原始定义和基本性质我们引用经典文献和新书.近年来的若干文献表明代数的Hochschild同调群和上同调群与代数的表示之间有紧密的联系.我们指出同时研究Hochschild同调群和上同调群  相似文献   

6.
陈豪 《科学通报》1992,37(8):678-678
文献[1]研究了Zariski提出的如下问题:设(V,0)=spec R为域R上仿射簇的芽,若R的导子模是自由R模,R是否一定是正则的。这个问题也在文献[2]及其参考文献中讨论过,最后由Flenner给出了奇迹余维大于3时的肯定证明(要求char R=0)。遗留的一种有趣情形是dim R=2。在R=C时,Zariski-Lipman猜测有如下的几何形式:设  相似文献   

7.
Banach空间的无限维可分商   总被引:1,自引:0,他引:1  
钟怀杰 《科学通报》1995,40(16):1441-1441
在泛函分析中有一个基本问题:是否每一无限维Banach空间都有一个无限维的、可分的商空间?该问题长期未获解决(见文献[1]和[2]等).定义1 设X是无限维Banach空间,如果存在X的闭子空间M,使得商空间Y=X/M是无限维的,并且按商范数拓扑是可分的,则称X有无限维可分商.定义2 设B(Y,X)表示由Banach空间Y到Banach空间X的有界线性算子的全体;  相似文献   

8.
某些非线性算子的固有值   总被引:1,自引:0,他引:1  
张庆雍 《科学通报》1981,26(11):649-649
在这篇文章中,作者推广了Cronin在文献[1]中的主要结果,所用的方法比文献[1]中的方法简单。设X是一无限维的线性赋范空间,DX,映照A:D→X满足下面诸条件:(ⅰ)A全连续(即A把D中的有界集变成X中的紧集);  相似文献   

9.
胡国权 《科学通报》1997,42(2):133-137
域K上两个代数的张量积还是一个代数。类似地,拟三角Hopf代数(H,R)上的代数(H-模代数)的辫化张量积仍是H-模代数。但一般来说,H-模代数A,B是H-交换不能保证A(?)B仍是H-交换的,文献[1]中证明了当(H,R)为三角Hopf代数时,A,B为H-交换可推出A(?)B也为H-交换。本文在更一般的背景下(对任一Hopf代数H,考虑其Yetter-Drinfel’d范畴_H~HYO中的代数)来研究量子交换代数的辫化张量积成为量子交换代数的充要条件,作为推论得知文献[1]中上述结论反过来亦成立,从而得到三角(余三角)Hopf代数的一种新的刻画。由于将拟三角Hopf代数的作用和余拟三角Hopf代数的余作用统一在一起进行研究,同时也可获得对偶情形的结果。  相似文献   

10.
李绍宽 《科学通报》1989,34(24):1851-1851
在文献[1]中,Halmos提出如下的猜测:对Hlbert空间上算子A=B+iC,成立 这里δ(A)表示A到Hilbert空间H中正算子集罗的距离。且证明了  相似文献   

11.
李炳仁 《科学通报》1984,29(11):644-644
c~*代数上的态称为因子的,指由这个态所产生的von Neumann代数(通过GNS构造)是因子。熟知任意c~*代数的任意c~*子代数上的态可以扩张为该c~*代数上的态。自然要问对于因子态,这个性质是否也成立?这是一个迄今为止没有得到解决而又有兴趣的问题。关于这个问题,部份的结果可见文献[1—5]。本文的目的在于给出文献[1—5]中关于这个问题的所有结果的简单证明,同时把其中一个主要结果由核c~*代数的情形推广为半核c~*代数,也包括若干其它的发展。  相似文献   

12.
靳全勤  张知学 《科学通报》1998,43(20):2236-2237
李代数的自同构理论是李代数的重要研究课题之一.某些作者对仿射李代数的二、三阶自同构进行了分类[1,2].本文对无扭仿射李代数的第一类任意有限阶内自同构进行分类.  设g为无扭仿射李代数,g°为相应的有限维李代数,Π={α0,α1,…,αn}和Π°={α1,…,αn}(或h和h°)分别为g和g°的素根系(或Cartan子代数);a0,a1,…,an为g的Dynkin图中标于各顶点的正整数(见文献[3]).由文献[1]中的讨论,g的自同构只有以下3种类型:第一类内自同构σ=eadh,第一类外自同构σ=Deadh和第二类自同构σ=ωDγ,其中h∈h,ω…  相似文献   

13.
格蕴涵代数的滤子与结构   总被引:16,自引:0,他引:16  
刘军  徐扬 《科学通报》1997,42(10):1049-1052
为了从语义角度研究命题的真值取于格上的逻辑系统,文献[1]将格与蕴涵代数相结合提出了格蕴涵代数的概念,文献[1,3~5]研究了格蕴涵代数的一些性质.本文讨论格蕴涵代数中的滤子,特别是生成滤子,并由此探讨一类格蕴涵代数的结构特征.1 滤子及其性质关于格蕴涵代数及其中滤子的定义参看文献[1].定义1 设(L,V,∧,’,→)为一个格蕴涵代数,称包含A(?)L的最小滤子(A]为由A生成的滤子.  相似文献   

14.
张伦传  马吉溥 《科学通报》1997,42(10):1038-1041
1 引言及主要结果Arveson 把经典的Hahn—Banach扩张定理推广到了C-代数的自伴线性闭子空间上.从此,许多数学工作者对Arveson扩张定理作了推广,下述结果属于G,Wittstock,命题1.1(见文献[2]定理4.2)设X是-算子空间,A是一有单位元的 C-代数且A(?)X,若(?):X→B(H)是一完全收缩映射,则存在完全收缩映射(?):A→(H)使得(?)|X=(?)且||(?)||_cb=||(?)||_cb利用该命题易得:推论1.1 设X与Y均为算子空间且Y(?)X,若(?):Y→(H)是一完全收缩映射,则存在完全收缩映射(?):x→B(H)使得(?)|Y=(?)且||(?)||_cb=||(?)||_cb但命题1.1中的(?)的唯一性问题从未被人涉及,本文用自由C-代数和遗传C-代数为工具,给出了命题1.1中扩张(?)对任何Hilbert空间H均具唯一性的一个充要条件,即下述的:定理1.1 设X和Y均为算子空间,且Y(?)X,1∈X,则下述等价:(1)对每个Hilbert空间H及每个完全收缩映射(?):Y→B(H),都唯一存在完全收缩扩张映射(?):x→B(H)使得(?)|Y=(?)且||(?)||_cb=||(?)||_cb(2)C(Y)是C(X)的遗传C-子代数,定理1.2 记号同于命题1.1,则对每个Hilbert空间H,(?)均唯一存在的充要条件为:I(X)是A的遗传C-子代数,其中I(X)是由X生成的A的C-子代数,  相似文献   

15.
严绍宗 《科学通报》1987,32(8):561-561
H是复Hilbert空间,B(H)是H上有界线性算子全体,C是复数域。对任何A,A~(-1)∈B(H),文献[1]中称算子C=A~(*-1)A为A的极·积算子,文献[1]对C作了较多研究,文献[2]中以极·积算子为工具,给出H上算子方程λA~2+μA~(*2)=αA~*A+βAA~*(λ,μ,α,β∈C)可解性的研究,并写出了它的全部解。文献[2]中主要用到当C为正常算子时,方程C=A~(*-1)A可解的充要条件以及它的全部解的表达式(见文献[1]定理5)。这就很自然地促使人们研究  相似文献   

16.
张伦传  马吉溥 《科学通报》1996,41(18):1636-1638
如所周知,遗传及全遗传C~*-子代数在C~*-代数的Morita等价理论及相关课题研究中起着很重要的作用。Edwards在文献[3]中把遗传C~*-子代数概念推广到了非结合代数——JB代数中,并获得了 命题A(文献[3],定理2.3)设A是JB-代数,则A的遗传JB-子代数与A的二次理想(即内理想)一致。 最近Edwards与Rttimann在文献[4]中证明了 命题B(文献[4],推论2.2) 设A是JB-代数,B为其JB-子代数,则B是A的二次理想(内理想)的充要条件是:B~(*+)中的任意正线性泛函到A~(*+)中的保范扩张唯一。 本文从此出发,给出了JB-子代数成为遗传JB-子代数的若干充要条件。进而又给出了全遗传JB-子代数的一个刻画。  相似文献   

17.
葛祖金 《科学通报》1993,38(4):291-291
Kaplansky提出了如下问题:素数维的Hopf代数一定是交换且余交换的。本文中我们证明了:若素数维余半单的Hopf代数A的一切单子余代数C均满足dimC≦8,则A是群代数(素数维的群代数自然是交换且余交换的)。  相似文献   

18.
陈吉象 《科学通报》1987,32(24):1844-1844
Rajagopalan和Wilansky在文献[1]中提出了可逆拓扑空间的概念,此后一些作者也做了一系列的研究。对任意拓扑空间X,令E(X)和H(X)分别表示X到自身的连续双射(即既单又满的连续映射)和自同胚的全体。如果E(X)=H(X),则X称为可逆拓扑空间,否则称X为非可逆的。可逆空间包括了紧致Hausdorff空间以及n维(对一切正整数n)不带边流形等一大类空间。文献[1]定理6指出,若X由有限个连通支组成,则X可逆的充要条件  相似文献   

19.
微分算子代数的导子Lie代数   总被引:4,自引:0,他引:4  
赵开明 《科学通报》1993,38(2):100-100
文献[1]研究了微分算子Lie代数的2-上循环,下面我们来确定微分算子Lie代数和微分算子(结合)代数的导子Lie代数。 1 微分算子代数的外导子设=C[t,t~(-1)]是复数域上的Laurent多项式代数,d/dt是作用在上的微分算子,记td/dt为D(与文献[1]中符号不同)。易证  相似文献   

20.
设D是复平面上的区域,H~∞(D)表示D上有界解析函数的代数,M(D)为H~∞(D)的极大理想空间,Corona问题:D是否在M(D)中稠密?显然,D在M(D)中稠密的充要条件为,对任何有限个f_1,…,f_n∈H~∞(D),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号