首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
赵成吉  卜凡哲  那辉 《科学通报》2019,64(2):中插6,172-179
成功合成了一个同时带有季铵基团和烷基溴的小分子(1-溴-6-(三甲基铵)己基溴化物),通过季铵化反应,将其接枝在三乙烯二胺季铵化的聚芳醚酮上,制备了带有柔性侧链且侧链上含有多季铵基团的聚芳醚酮(TQPAEK).利用溶液流延的方法,并经碱化处理制备得到OH~–型阴离子交换膜.通过改变起始聚合物的溴代度,可有效调控阴离子交换膜的离子交换容量,其范围在1.75~2.57meq/g.膜的溶胀度、吸水率与离子传导率均随着离子交换容量的增加而增大.该阴离子交换膜具有良好的热稳定性和机械性能,特别是柔性侧链的引入,显著地提高了聚合物膜的柔韧性,其断裂伸长率最高可达103.2%,拉伸强度仍在28MPa以上.引入多季铵化柔性侧链,有利于高局部离子基团的富集程度,在膜内形成了明显的相分离结构.80℃下最高离子电导率可达74.35mS/cm.这些结果表明多季铵化聚芳醚酮阴离子交换膜有望应用于燃料电池.  相似文献   

2.
高莉  吴雪梅  焉晓明  宫雪  陈婉婷  李甜甜  贺高红 《科学通报》2019,64(2):中插3,145-152
碱性阴离子交换膜(AEMs)是碱性阴离子交换膜燃料电池的核心部件之一,目前已成为制约碱性阴离子交换膜燃料电池发展的关键因素.离子传导基团在碱性条件下,容易受到氢氧根离子的攻击发生降解.本文主要从以下3个方面介绍了近期AEMs在耐碱稳定性方面的研究成果:(1)开发稳定的离子传导基团,并通过提高离子传导基团的电子密度和增大缺电子位置的空间位阻提高离子基团的稳定性;(2)在离子传导基团与聚合物主链之间引入长烷基侧链;(3)合成不含醚氧键的聚合物主链,改善AEMs的耐碱稳定性.  相似文献   

3.
薛博欣  郑吉富  张所波 《科学通报》2019,64(2):中插2,134-144
近年来,碱性阴离子交换膜燃料电池的发展得到了国内外研究人员的广泛关注,其中开发具有高碱稳定性的阴离子交换膜材料成为了研究的热点和难点.除了聚合物骨架,改善离子基团的稳定性对于阴离子交换膜材料整体稳定性的提高具有关键作用.胍盐离子作为一种新型的离子基团,分子结构中正电荷共轭分布在中心碳和3个氮原子上,电荷高度离域使得胍盐离子具有非常优异的热稳定性和化学稳定性,有望解决传统季铵盐离子在碱性条件下存在的降解问题.本文综述了近年来胍盐型阴离子交换膜材料的研究进展,其中包括胍盐阴离子交换膜材料的制备、分类以及胍盐离子的降解机理,同时对于耐碱型胍盐阴离子交换膜的结构设计进行了分析和展望.  相似文献   

4.
陶正旺  汪称意  徐常  赵晓燕 《科学通报》2020,65(21):2279-2291
为了提高聚合物阴离子交换膜的电导率、碱稳定性和尺寸稳定性,本研究通过分子结构设计,利用4-氟-2,2,2-三氟苯乙酮、3,5-二甲基苯酚、苯酚为起始原料,经两步有机反应合成了含二甲基苯氧基苯侧基的新型活性双酚单体:1,1-二(4-羟基苯基)-1-(4-(3,5-二甲基苯氧基)苯基)苯基-2,2,2-三氟乙烷(2),并将其与联苯二酚、4,4'-二氟二苯砜经芳香亲核共缩聚、溴代、季铵化反应制备了两类具有梳型结构的聚芳醚砜阴离子交换膜材料(2-PAES-QA-xx和2-PAES-Im-xx).利用核磁共振光谱对制备的活性双酚单体、含甲基结构初始聚芳醚砜、澳化聚芳醚砜及离子化聚合物的结构进行了表征和分析;详细研究了2-PAES-QA-xx和2-PAES-Im-xx膜的吸水率、尺寸稳定性、离子电导率、热稳定性、机械性能、耐碱稳定性等,并进一步比较了不同类型阴离子交换膜(AEM)的结构与性能之间的关系.得到的AEM表现出了较好的综合性能,60℃时膜的OIT电导率分别为35.9~51.6和32.6~44.9 mS/cm.代表性的2-PAES-QA-60和2-PAES-Im-60的OH~-电导率在80℃的4 mol/L NaOH中浸泡336 h后分别保持初始值的79.7%和88.5%.本研究为梳型AEM材料的设计制备提供了新策略.  相似文献   

5.
张守海  张本贵  陈宇宁  蹇锡高 《科学通报》2019,64(2):中插8,187-193
离子交换膜是全钒氧化还原液流电池的主要部件之一,其选择性和稳定性在一定程度上决定了电池的寿命,而目前大多数离子交换膜存在选择性或稳定性欠佳的状况.为了制备全钒氧化还原液流电池用高选择性离子交换膜,本文将不同溴甲基含量(0.75~0.99,平均每摩尔重复结构单元含有溴甲基的摩尔数)的含溴甲基杂萘联苯聚醚酮酮(BPPEKK)通过溶液浇铸法制备基膜,之后在三甲胺水溶液中进行胺化得到季铵化杂萘联苯聚醚酮酮阴离子交换膜(QBPPEKK).测试了QBPPEKK的离子交换容量、吸水率、溶胀率、钒渗透系数和面电阻.随着BPPEKK溴甲基含量的增加,所得QBPPEKK膜的离子交换容量和含水率增加,而其面电阻和钒离子质量传递系数降低.将QBPPEKK膜组装于全钒氧化还原液流电池中,电池的电压效率(VE)和能量效率(EE)随着QBPPEKK膜离子交换容量的增加而上升;当BPPEKK的取代度为0.99时,所制得的阴离子交换膜为QBPPEKK90膜,由其组装成电池的EE为87.7%(电流密度为40m A/cm~2),大于同条件下Nafion117的数值(86.0%).在1.5mol/L的VO_2~+溶液中浸泡60d后, QBPPEKK膜的拉伸强度高于36 MPa、膜表面形貌没有明显变化、组装电池性能变化不大,结果表明QBPPEKK膜在VO_2~+溶液中表现出良好的稳定性.  相似文献   

6.
合成了N,N-二烯丙基吡咯烷溴盐([DAPy][Br]),采用光引发聚合的方式制备了基于[DAPy][Br]的聚合物膜,经过离子交换后得到OH~-型阴离子交换膜.改变原料配比调控膜的离子交换容量,发现膜的溶胀度、吸水率、离子交换容量与电导率都随着[DAPy][Br]含量的增加而增大.该阴离子交换膜具有良好的机械性能和热稳定性,拉伸强度在室温下为10.6~19.8 MPa. 80℃下最高离子电导率可达7.29×10~(-2) S/cm.在成膜过程中[DAPy][Br]发生交联,形成拥有两个五元环的N-螺环结构阳离子,有效提高了膜的耐碱性能,[PSAN]_(70~-)[DAPy][OH]_(30)膜浸泡于80℃下1mol/LKOH溶液中240h,电导率仅下降了11%.上述结果表明,拥有N-螺环季铵盐的脂肪主链的阴离子交换膜有望应用于燃料电池.  相似文献   

7.
刘磊  褚晓萌  李南文 《科学通报》2019,64(2):中插1,123-133
与质子交换膜燃料电池相比,基于阴离子交换膜的碱性燃料电池具有可使用非贵金属催化剂、电极反应速率高等优点,近年来受到广泛的关注.然而,到目前为止,尚未开发出一种高性能的阴离子交换膜以备碱性燃料电池使用.本文从功能单体共聚和高分子接枝改性两方面概述了聚烯烃类阴离子交换膜的制备方法,探讨了膜的化学结构、微观相分离结构与膜性能之间关系,最后总结目前聚烯烃类阴离子交换膜的氢氧燃料电池性能,并对该领域的发展趋势进行了展望.  相似文献   

8.
司江菊  卢善富  相艳 《科学通报》2019,64(2):中插4,153-164
碱性阴离子交换膜燃料电池(AAEMFCs)因氧还原动力学快、可使用非Pt催化剂、成本低等优点迅速发展成燃料电池的重点研究领域.作为AAEMFCs的核心组件,碱性阴离子交换膜(AAEMs)的性能直接影响着燃料电池的输出性能和使用寿命.为保证燃料电池高效、稳定、长时间的运行,AAEMs应具备高的离子电导率、尺寸及化学稳定性.但目前开发的膜尚难同时满足这些要求,在实际应用中依然面临阴离子传输效率与尺寸稳定性难以兼顾、碱性稳定性较差等问题.本文将结合近年来国内外及本课题组的研究进展,梳理AAEMs发展中存在的关键问题与解决思路,展望未来的发展方向.  相似文献   

9.
严锋 《科学通报》2019,64(2):前插1,121-122
正基于阴离子交换聚合物膜的碱性燃料电池具有可使用非贵金属催化剂、电极反应速率快等优点,受到广泛关注.阴离子交换聚合物膜是碱性电解质膜燃料电池的核心部件,起到传导离子和阻隔燃料的双重作用,其性质直接决定着碱性燃料电池的最终性能、能量效率和使用寿命,因此受到高分子化学、材料与能源器件领域学者的广泛关注.最近十几年,阴离子交换聚合物膜在材料的制备方法、  相似文献   

10.
何炳林 《科学通报》1988,33(13):993-993
六十年代人们合成了纯对-氯甲基苯乙烯,并用以研究聚合物结构与性能关系。但是关于纯对-氯甲基苯乙烯与纯二乙烯苯异构体共聚机理及相应共聚物胺化后所得阴离子交换树脂结构与性能的研究至今未见报道。为了研究离子交换树脂结构与性能间关系,我们首先合成了高纯度对-氯甲基苯乙烯,并研究了对-氯甲基苯乙烯分别与间-及对-二乙烯苯在惰性溶剂存在下的共聚动力学、相分离和凝胶化性质。  相似文献   

11.
静电自组装纳米Pd颗粒对Nafion(R)膜的阻醇修饰   总被引:1,自引:0,他引:1  
目前直接甲醇燃料电池(DMFC)广泛使用的质子交换膜是Dupont公司生产的Nafion(r)系列膜, Nafion(r)膜的全氟主链具有良好的化学稳定性和机械性能, 然而全氟主链的疏水特性和作为导质子基团的磺酸根侧链的亲水特性使磺酸根以中空的团簇形式存在[1], 这种团簇相连形成的通道使Nafion(r)膜对甲醇有很高的渗透率.  相似文献   

12.
胺基酮在天然产物和药物合成方面具有极其重要的价值. Mannich反应是合成β-胺基酮的重要方法,但仍然存在局限性:无法合成-NH2未被修饰的β-氨基酮或-NH2连在β-季碳上的酮.本文利用可见光诱导的氧化还原催化,由烯醇三甲基硅醚与偕溴代硝基烃在温和条件下制备各种β-硝基酮,包括硝基连在β-季碳上的酮.这些结构新颖的β-硝基酮很容易转化为β-NH2酮、1,3-氨基醇、α,β-不饱和酮、β-氰基酮和γ-硝基酮.  相似文献   

13.
袁群惠  路军  万立骏  白春礼 《科学通报》2004,49(18):1851-1854
利用扫描隧道显微镜研究了3, 4, 5-三取代十二烷氧基苯甲酸甲酯(E12)和3, 4, 5-三取代十四烷氧基苯甲酸甲酯(E14)两种分子的自组装结构、组装层分子间相互作用以及两种分子共吸附在石墨表面时的组装结构. 两种分子均在石墨表面有序吸附, 分子在偶极-偶极相互作用下, 烷基链对插排列形成类二聚体的二维有序长程结构. 取代基数目的差异导致两种分子吸附结构不同. 两种分子混合在石墨表面吸附时, 各自形成不同的畴区, 呈相分离状态.  相似文献   

14.
采用离子热方法在离子液体[Emim]Br(1-乙基-3-甲基咪唑溴盐)中合成了夹心型的钨磷 酸盐H3(Emim)7[Ni4(Mim)2(PW9O34)2]·4H2O(1)(Mim 为乙基咪唑). 通过X 射线衍射、元素分析、 红外光谱、热重、XRD、电化学和光催化等对该化合物的结构和性质进行了测试和表征. X 射 线单晶衍射分析表明: 化合物1 属单斜晶系, C2/c 空间群, 晶胞参数: a = 35.584(7) Å, b = 14.513(3) Å, c = 24.423(5) Å, α= 90.000°, β= 101.38(3)°, γ= 90.000°, V = 12365(4) Å3, Z = 4. 在化 合物1 的晶体结构中, 阴离子框架为2 个乙基咪唑分子修饰的有机无机杂化夹心型阴离 子[Ni4(Mim)2(PW9O34)2]10-, 而且多酸阴离子的表面氧原子与游离的抗衡阳离子1-乙基-3-甲基 咪唑之间存在着广泛的C-H···O 氢键作用, 进而构筑成为一个三维的超分子框架.  相似文献   

15.
利用导电原子力显微镜针尖, 对组装在单晶硅上的有序长链硅烷(OTS)单分子膜进行微区电化学氧化, 非破坏地改变其表面甲基为羧基, 形成线宽、间距在纳米量级且可控的梳状结构模板. 然后通过镉离子吸附, 与硫化氢(H2S)气体反应, 生成硫化镉(CdS)线, 继续与氯金酸(HAuCl4)反应, 形成金纳米结构. 通过导电原子力显微镜测试, 发现其具有较好的导电性, 可以作为纳米电极.  相似文献   

16.
高振衡 《科学通报》1960,5(3):88-88
将3,4-二溴代-4-甲基戍酮-2(15克)的丙酮(25毫升)溶液,滴加至正在搅拌和回流着的邻苯二酚(6克)、无水碳酸钾(7.6克)和丙酮(50毫升)的混合物中。继续搅拌和回流20小时。然后依次沪去反应混  相似文献   

17.
葛明兰  熊杰明  王利生 《科学通报》2009,54(10):1419-1423
基于理论线性溶剂化能模型 (TLSER), 应用半经验分子轨道能AM1法计算烷烃、芳烃、醇类、氯代甲烷等34种有机非极性和极性化合物的量化参数, 建立了描述有机溶质在离子液体1-丁基-3-甲基咪唑三氟甲基磺酸盐 ([BMIM][CF3SO3]) 和1-丙基-2,3-二甲基咪唑四氟硼酸盐([PDMIM][BF4])中无限稀释活度系数γi的理论预测模型. 该模型能够解释溶质和离子液体(ILs)之间的相互作用机理, 适于估算有机溶质在ILs中的γi. 研究结果可能为针对具体不同的反应或分离过程等实现有效的ILs设计提供理论依据.  相似文献   

18.
章正熙  高旭辉杨立 《科学通报》2005,50(15):1584-1588
选择亲水型甲基烷基咪唑四氟硼酸盐和憎水型甲基烷基咪唑二(三氟甲基磺酰)亚胺盐两个系列的离子液体作为电解液, 系统研究了纯离子液体及离子液体/混合有机溶剂EC-DMC-DEC(111, 质量比)体系的电化学性能. 实验发现 对于纯离子液体, 在较低的温度范围内(298 ~ 323 K), 电导率与温度的关系符合Arrhenius方程, 在更广的温度范围内, 四氟硼酸盐系列离子液体符合VTF方程, 而二(三氟甲基磺酰)亚胺盐系列有偏差. 两个系列的离子液体的电化学窗口都在4 V左右. 对于离子液体/有机溶剂混合体系, 随着浓度的增加, 电导率有一最大值出现.  相似文献   

19.
BF-4和TFSI-系列室温离子液体绿色电解液的电化学性能   总被引:1,自引:0,他引:1  
章正熙  高旭辉  杨立 《科学通报》2005,50(15):1584-1588
选择亲水型甲基烷基咪唑四氟硼酸盐和憎水型甲基烷基咪唑二(三氟甲基磺酰)亚胺盐两个系列的离子液体作为电解液,系统研究了纯离子液体及离子液体/混合有机溶剂EC-DMC-DEC(1:1:1,质量比)体系的电化学性能.实验发现:对于纯离子液体,在较低的温度范围内(298~323K),电导率与温度的关系符合Arrhenius方程,在更广的温度范围内,四氟硼酸盐系列离子液体符合VTF方程,而二(三氟甲基磺酰)亚胺盐系列有偏差.两个系列的离子液体的电化学窗口都在4V左右.对于离子液体/有机溶剂混合体系,随着浓度的增加,电导率有一最大值出现.  相似文献   

20.
选择亲水型甲基烷基咪唑四氟硼酸盐和憎水型甲基烷基咪唑二(三氟甲基磺酰)亚胺盐两个系列的离子液体作为电解液, 系统研究了纯离子液体及离子液体/混合有机溶剂EC-DMC-DEC(1:1:1, 质量比)体系的电化学性能. 实验发现: 对于纯离子液体, 在较低的温度范围内(298 ~ 323 K), 电导率与温度的关系符合Arrhenius方程, 在更广的温度范围内, 四氟硼酸盐系列离子液体符合VTF方程, 而二(三氟甲基磺酰)亚胺盐系列有偏差. 两个系列的离子液体的电化学窗口都在4 V左右. 对于离子液体/有机溶剂混合体系, 随着浓度的增加, 电导率有一最大值出现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号