首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss, vestibular dysfunction and visual impairment due to early onset retinitis pigmentosa (RP). So far, six loci (USH1A-USH1F) have been mapped, but only two USH1 genes have been identified: MYO7A for USH1B and the gene encoding harmonin for USH1C. We identified a Cuban pedigree linked to the locus for Usher syndrome type 1D (MIM 601067) within the q2 region of chromosome 10). Affected individuals present with congenital deafness and a highly variable degree of retinal degeneration. Using a positional candidate approach, we identified a new member of the cadherin gene superfamily, CDH23. It encodes a protein of 3,354 amino acids with a single transmembrane domain and 27 cadherin repeats. In the Cuban family, we detected two different mutations: a severe course of the retinal disease was observed in individuals homozygous for what is probably a truncating splice-site mutation (c.4488G-->C), whereas mild RP is present in individuals carrying the homozygous missense mutation R1746Q. A variable expression of the retinal phenotype was seen in patients with a combination of both mutations. In addition, we identified two mutations, Delta M1281 and IVS51+5G-->A, in a German USH1 patient. Our data show that different mutations in CDH23 result in USH1D with a variable retinal phenotype. In an accompanying paper, it is shown that mutations in the mouse ortholog cause disorganization of inner ear stereocilia and deafness in the waltzer mouse.  相似文献   

2.
3.
Mouse chromosome 10 harbors several loci associated with hearing loss, including waltzer (v), modifier-of deaf waddler (mdfw) and Age-related hearing loss (Ahl). The human region that is orthologous to the mouse 'waltzer' region is located at 10q21-q22 and contains the human deafness loci DFNB12 and USH1D). Numerous mutations at the waltzer locus have been documented causing erratic circling and hearing loss. Here we report the identification of a new gene mutated in v. The 10.5-kb Cdh23 cDNA encodes a very large, single-pass transmembrane protein, that we have called otocadherin. It has an extracellular domain that contains 27 repeats; these show significant homology to the cadherin ectodomain. In v(6J), a GT transversion creates a premature stop codon. In v(Alb), a CT exchange generates an ectopic donor splice site, effecting deletion of 119 nucleotides of exonic sequence. In v(2J), a GA transition abolishes the donor splice site, leading to aberrant splice forms. All three alleles are predicted to cause loss of function. We demonstrate Cdh23 expression in the neurosensory epithelium and show that during early hair-cell differentiation, stereocilia organization is disrupted in v(2J) homozygotes. Our data indicate that otocadherin is a critical component of hair bundle formation. Mutations in human CDH23 cause Usher syndrome type 1D and thus, establish waltzer as the mouse model for USH1D.  相似文献   

4.
Auditory neuropathy is a particular type of hearing impairment in which neural transmission of the auditory signal is impaired, while cochlear outer hair cells remain functional. Here we report on DFNB59, a newly identified gene on chromosome 2q31.1-q31.3 mutated in four families segregating autosomal recessive auditory neuropathy. DFNB59 encodes pejvakin, a 352-residue protein. Pejvakin is a paralog of DFNA5, a protein of unknown function also involved in deafness. By immunohistofluorescence, pejvakin is detected in the cell bodies of neurons of the afferent auditory pathway. Furthermore, Dfnb59 knock-in mice, homozygous for the R183W variant identified in one DFNB59 family, show abnormal auditory brainstem responses indicative of neuronal dysfunction along the auditory pathway. Unlike previously described sensorineural deafness genes, all of which underlie cochlear cell pathologies, DFNB59 is the first human gene implicated in nonsyndromic deafness due to a neuronal defect.  相似文献   

5.
17q11 microdeletions that encompass NF1 cause 5%-10% of cases of neurofibromatosis type 1, and individuals with microdeletions are typically taller than individuals with intragenic NF1 mutations, suggesting that deletion of a neighboring gene might promote human growth. We identified mutations in RNF135, which is within the NF1 microdeletion region, in six families characterized by overgrowth, learning disability, dysmorphic features and variable additional features. These data identify RNF135 as causative of a new overgrowth syndrome and demonstrate that RNF135 haploinsufficiency contributes to the phenotype of NF1 microdeletion cases.  相似文献   

6.
7.
Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.  相似文献   

8.
The Pendred syndrome gene encodes a chloride-iodide transport protein   总被引:24,自引:0,他引:24  
Pendred syndrome is the most common form of syndromic deafness and characterized by congenital sensorineural hearing loss and goitre. This disorder was mapped to chromosome 7 and the gene causing Pendred syndrome (PDS) was subsequently identified by positional cloning. PDS encodes a putative transmembrane protein designated pendrin. Pendrin is closely related to a family of sulfate transport proteins that includes the rat sulfate-anion transporter (encoded by Sat-1; 29% amino acid sequence identity), the human diastrophic dysplasia sulfate transporter (encoded by DTD; 32%) and the human sulfate transporter 'downregulated in adenoma' (encoded by DRA; 45%). On the basis of this homology and the presence of a slightly modified sulfate-transporter signature sequence comprising its putative second transmembrane domain, pendrin has been proposed to function as a sulfate transporter. We were unable to detect evidence of sulfate transport following the expression of pendrin in Xenopus laevis oocytes by microinjection of PDS cRNA or in Sf9 cells following infection with PDS-recombinant baculovirus. The rates of transport for iodide and chloride were significantly increased following the expression of pendrin in both cell systems. Our results demonstrate that pendrin functions as a transporter of chloride and iodide, but not sulfate, and may provide insight into thyroid physiology and the pathophysiology of Pendred syndrome.  相似文献   

9.
Human earwax consists of wet and dry types. Dry earwax is frequent in East Asians, whereas wet earwax is common in other populations. Here we show that a SNP, 538G --> A (rs17822931), in the ABCC11 gene is responsible for determination of earwax type. The AA genotype corresponds to dry earwax, and GA and GG to wet type. A 27-bp deletion in ABCC11 exon 29 was also found in a few individuals of Asian ancestry. A functional assay demonstrated that cells with allele A show a lower excretory activity for cGMP than those with allele G. The allele A frequency shows a north-south and east-west downward geographical gradient; worldwide, it is highest in Chinese and Koreans, and a common dry-type haplotype is retained among various ethnic populations. These suggest that the allele A arose in northeast Asia and thereafter spread through the world. The 538G --> A SNP is the first example of DNA polymorphism determining a visible genetic trait.  相似文献   

10.
Thiamine-responsive megaloblastic anaemia syndrome (TRMA; MIM 249270) is an autosomal recessive disorder with features that include megaloblastic anaemia, mild thrombocytopenia and leucopenia, sensorineural deafness and diabetes mellitus. Treatment with pharmacologic doses of thiamine ameliorates the megaloblastic anaemia and diabetes mellitus. A defect in the plasma membrane transport of thiamine has been demonstrated in erythrocytes and cultured skin fibroblasts from TRMA patients. The gene causing TRMA was assigned to 1q23.2-q23.3 by linkage analysis. Here we report the cloning of a new gene, SLC19A2, identified from high-through-put genomic sequences due to homology with SLC19A1, encoding reduced folate carrier 1 (refs 8-10). We cloned the entire coding region by screening a human fetal brain cDNA library. SLC19A2 encodes a protein (of 497 aa) predicted to have 12 transmembrane domains. We identified 2 frameshift mutations in exon 2. a 1-bp insertion and a 2-bp deletion, among four Iranian families with TRMA. The sequence homology and predicted structure of SLC19A2, as well as its role in TRMA, suggest that its gene product is a thiamine carrier, the first to be identified in complex eukaryotes.  相似文献   

11.
12.
Positional cloning of hereditary deafness genes is a direct approach to identify molecules and mechanisms underlying auditory function. Here we report a locus for dominant deafness, DFNA36, which maps to human chromosome 9q13-21 in a region overlapping the DFNB7/B11 locus for recessive deafness. We identified eight mutations in a new gene, transmembrane cochlear-expressed gene 1 (TMC1), in a DFNA36 family and eleven DFNB7/B11 families. We detected a 1.6-kb genomic deletion encompassing exon 14 of Tmc1 in the recessive deafness (dn) mouse mutant, which lacks auditory responses and has hair-cell degeneration. TMC1 and TMC2 on chromosome 20p13 are members of a gene family predicted to encode transmembrane proteins. Tmc1 mRNA is expressed in hair cells of the postnatal mouse cochlea and vestibular end organs and is required for normal function of cochlear hair cells.  相似文献   

13.
14.
Beethoven, a mouse model for dominant, progressive hearing loss DFNA36   总被引:9,自引:0,他引:9  
Despite recent progress in identifying genes underlying deafness, there are still relatively few mouse models of specific forms of human deafness. Here we describe the phenotype of the Beethoven (Bth) mouse mutant and a missense mutation in Tmc1 (transmembrane cochlear-expressed gene 1). Progressive hearing loss (DFNA36) and profound congenital deafness (DFNB7/B11) are caused by dominant and recessive mutations of the human ortholog, TMC1 (ref. 1), for which Bth and deafness (dn) are mouse models, respectively.  相似文献   

15.
Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13)   总被引:13,自引:0,他引:13  
We report that mutation of COL11A2 causes deafness previously mapped to the DFNA13 locus on chromosome 6p. We found two families (one American and one Dutch) with autosomal dominant, non-syndromic hearing loss to have mutations in COL11A2 that are predicted to affect the triple-helix domain of the collagen protein. In both families, deafness is non-progressive and predominantly affects middle frequencies. Mice with a targeted disruption of Col11a2 also were shown to have hearing loss. Electron microscopy of the tectorial membrane of these mice revealed loss of organization of the collagen fibrils. Our findings revealed a unique ultrastructural malformation of inner-ear architecture associated with non-syndromic hearing loss, and suggest that tectorial membrane abnormalities may be one aetiology of sensorineural hearing loss primarily affecting the mid-frequencies.  相似文献   

16.
We report heterozygous mutations in the genes encoding either type I or type II transforming growth factor beta receptor in ten families with a newly described human phenotype that includes widespread perturbations in cardiovascular, craniofacial, neurocognitive and skeletal development. Despite evidence that receptors derived from selected mutated alleles cannot support TGFbeta signal propagation, cells derived from individuals heterozygous with respect to these mutations did not show altered kinetics of the acute phase response to administered ligand. Furthermore, tissues derived from affected individuals showed increased expression of both collagen and connective tissue growth factor, as well as nuclear enrichment of phosphorylated Smad2, indicative of increased TGFbeta signaling. These data definitively implicate perturbation of TGFbeta signaling in many common human phenotypes, including craniosynostosis, cleft palate, arterial aneurysms, congenital heart disease and mental retardation, and suggest that comprehensive mechanistic insight will require consideration of both primary and compensatory events.  相似文献   

17.
Donnai-Barrow syndrome is associated with agenesis of the corpus callosum, congenital diaphragmatic hernia, facial dysmorphology, ocular anomalies, sensorineural hearing loss and developmental delay. By studying multiplex families, we mapped this disorder to chromosome 2q23.3-31.1 and identified LRP2 mutations in six families with Donnai-Barrow syndrome and one family with facio-oculo-acoustico-renal syndrome. LRP2 encodes megalin, a multiligand uptake receptor that regulates levels of diverse circulating compounds. This work implicates a pathway with potential pharmacological therapeutic targets.  相似文献   

18.
Thiamine-responsive megaloblastic anaemia (TRMA), also known as Rogers syndrome, is an early onset, autosomal recessive disorder defined by the occurrence of megaloblastic anaemia, diabetes mellitus and sensorineural deafness, responding in varying degrees to thiamine treatment (MIM 249270). We have previously narrowed the TRMA locus from a 16-cM to a 4-cM interval on chromosomal region 1q23.3 (refs 3,4) and this region has been further refined to a 1.4-cM interval. Previous studies have suggested that deficiency in a high-affinity thiamine transporter may cause this disorder. Here we identify the TRMA gene by positional cloning. We assembled a P1-derived artificial chromosome (PAC) contig spanning the TRMA candidate region. This clarified the order of genetic markers across the TRMA locus, provided 9 new polymorphic markers and narrowed the locus to an approximately 400-kb region. Mutations in a new gene, SLC19A2, encoding a putative transmembrane protein homologous to the reduced folate carrier proteins, were found in all affected individuals in six TRMA families, suggesting that a defective thiamine transporter protein (THTR-1) may underlie the TRMA syndrome.  相似文献   

19.
Splotch is considered a model of Waardenburg syndrome type I (WSI) because the abnormalities are caused by mutations in homologous genes, Pax-3 in mice and PAX3 (HuP2) in humans. We examined inner ear structure and function in Splotch mutants (Sp/+) and found no sign of auditory defects, in contrast to the deafness in many WSI individuals. The difference in expression of the genes in the two species may be due to different parts of the gene being mutated, or may result from variations in modifying influences as yet undefined.  相似文献   

20.
Familial cold autoinflammatory syndrome (FCAS, MIM 120100), commonly known as familial cold urticaria (FCU), is an autosomal-dominant systemic inflammatory disease characterized by intermittent episodes of rash, arthralgia, fever and conjunctivitis after generalized exposure to cold. FCAS was previously mapped to a 10-cM region on chromosome 1q44 (refs. 5,6). Muckle-Wells syndrome (MWS; MIM 191900), which also maps to chromosome 1q44, is an autosomal-dominant periodic fever syndrome with a similar phenotype except that symptoms are not precipitated by cold exposure and that sensorineural hearing loss is frequently also present. To identify the genes for FCAS and MWS, we screened exons in the 1q44 region for mutations by direct sequencing of genomic DNA from affected individuals and controls. This resulted in the identification of four distinct mutations in a gene that segregated with the disorder in three families with FCAS and one family with MWS. This gene, called CIAS1, is expressed in peripheral blood leukocytes and encodes a protein with a pyrin domain, a nucleotide-binding site (NBS, NACHT subfamily) domain and a leucine-rich repeat (LRR) motif region, suggesting a role in the regulation of inflammation and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号