首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
Caussinus E  Gonzalez C 《Nature genetics》2005,37(10):1125-1129
Loss of cell polarity and cancer are tightly correlated, but proof for a causative relationship has remained elusive. In stem cells, loss of polarity and impairment of asymmetric cell division could alter cell fates and thereby render daughter cells unable to respond to the mechanisms that control proliferation. To test this hypothesis, we generated Drosophila melanogaster larval neuroblasts containing mutations in various genes that control asymmetric cell division and then assayed their proliferative potential after transplantation into adult hosts. We found that larval brain tissue carrying neuroblasts with mutations in raps (also called pins), mira, numb or pros grew to more than 100 times their initial size, invading other tissues and killing the hosts in 2 weeks. These tumors became immortal and could be retransplanted into new hosts for years. Six weeks after the first implantation, genome instability and centrosome alterations, two traits of malignant carcinomas, appeared in these tumors. Increasing evidence suggests that some tumors may be of stem cell origin. Our results show that loss of function of any of several genes that control the fate of a stem cell's daughters may result in hyperproliferation, triggering a chain of events that subverts cell homeostasis in a general sense and leads to cancer.  相似文献   

2.
Embryonic stem (ES) cells are important tools in the study of gene function and may also become important in cell therapy applications. Establishment of stable XX ES cell lines from mouse blastocysts is relatively problematic owing to frequent loss of one of the two X chromosomes. Here we show that DNA methylation is globally reduced in XX ES cell lines and that this is attributable to the presence of two active X chromosomes. Hypomethylation affects both repetitive and unique sequences, the latter including differentially methylated regions that regulate expression of parentally imprinted genes. Methylation of differentially methylated regions can be restored coincident with elimination of an X chromosome in early-passage parthenogenetic ES cells, suggesting that selection against loss of methylation may provide the basis for X-chromosome instability. Finally, we show that hypomethylation is associated with reduced levels of the de novo DNA methyltransferases Dnmt3a and Dnmt3b and that ectopic expression of these factors restores global methylation levels.  相似文献   

3.
A molecular signature of metastasis in primary solid tumors   总被引:54,自引:0,他引:54  
Metastasis is the principal event leading to death in individuals with cancer, yet its molecular basis is poorly understood. To explore the molecular differences between human primary tumors and metastases, we compared the gene-expression profiles of adenocarcinoma metastases of multiple tumor types to unmatched primary adenocarcinomas. We found a gene-expression signature that distinguished primary from metastatic adenocarcinomas. More notably, we found that a subset of primary tumors resembled metastatic tumors with respect to this gene-expression signature. We confirmed this finding by applying the expression signature to data on 279 primary solid tumors of diverse types. We found that solid tumors carrying the gene-expression signature were most likely to be associated with metastasis and poor clinical outcome (P < 0.03). These results suggest that the metastatic potential of human tumors is encoded in the bulk of a primary tumor, thus challenging the notion that metastases arise from rare cells within a primary tumor that have the ability to metastasize.  相似文献   

4.
5.
The molecular controls that govern the differentiation of embryonic stem (ES) cells remain poorly understood. DGCR8 is an RNA-binding protein that assists the RNase III enzyme Drosha in the processing of microRNAs (miRNAs), a subclass of small RNAs. Here we study the role of miRNAs in ES cell differentiation by generating a Dgcr8 knockout model. Analysis of mouse knockout ES cells shows that DGCR8 is essential for biogenesis of miRNAs. On the induction of differentiation, DGCR8-deficient ES cells do not fully downregulate pluripotency markers and retain the ability to produce ES cell colonies; however, they do express some markers of differentiation. This phenotype differs from that reported for Dicer1 knockout cells, suggesting that Dicer has miRNA-independent roles in ES cell function. Our findings indicate that miRNAs function in the silencing of ES cell self-renewal that normally occurs with the induction of differentiation.  相似文献   

6.
Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.  相似文献   

7.
The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain and interlocus variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chimaeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives.  相似文献   

8.
9.
Chromatin immunoprecipitation (ChIP) defines the genomic distribution of proteins and their modifications but is limited by the cell numbers required (ideally >10(7)). Here we describe a protocol that uses carrier chromatin and PCR, 'carrier' ChIP (CChIP), to permit analysis of as few as 100 cells. We assayed histone modifications at key regulator genes (such as Nanog, Pou5f1 (also known as Oct4) and Cdx2) by CChIP in mouse embryonic stem (ES) cells and in inner cell mass (ICM) and trophectoderm of cultured blastocysts. Activating and silencing modifications (H4 acetylation and H3K9 methylation) mark active and silent promoters as predicted, and we find close correlation between values derived from CChIP (1,000 ES cells) and conventional ChIP (5 x 10(7) ES cells). Studies on genes silenced in both ICM and ES cells (Cdx2, Cfc1, Hhex and Nkx2-2, also known as Nkx) show that the intensity of silencing marks is relatively diminished in ES cells, indicating a possible relaxation of some components of silencing on adaptation to culture.  相似文献   

10.
11.
Sung LY  Gao S  Shen H  Yu H  Song Y  Smith SL  Chang CC  Inoue K  Kuo L  Lian J  Li A  Tian XC  Tuck DP  Weissman SM  Yang X  Cheng T 《Nature genetics》2006,38(11):1323-1328
Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.  相似文献   

12.
13.
14.
Bmi1 is expressed in vivo in intestinal stem cells   总被引:1,自引:0,他引:1  
Bmi1 plays an essential part in the self-renewal of hematopoietic and neural stem cells. To investigate its role in other adult stem cell populations, we generated a mouse expressing a tamoxifen-inducible Cre from the Bmi1 locus. We found that Bmi1 is expressed in discrete cells located near the bottom of crypts in the small intestine, predominantly four cells above the base of the crypt (+4 position). Over time, these cells proliferate, expand, self-renew and give rise to all the differentiated cell lineages of the small intestine epithelium. The induction of a stable form of beta-catenin in these cells was sufficient to rapidly generate adenomas. Moreover, ablation of Bmi1(+) cells using a Rosa26 conditional allele, expressing diphtheria toxin, led to crypt loss. These experiments identify Bmi1 as an intestinal stem cell marker in vivo. Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.  相似文献   

15.
16.
17.
18.
We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2-/- mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.  相似文献   

19.
In blastocyst chimeras, embryonic stem (ES) cells contribute to embryonic tissues but not extraembryonic trophectoderm. Conditional activation of HRas1(Q61L) in ES cells in vitro induces the trophectoderm marker Cdx2 and enables derivation of trophoblast stem (TS) cell lines that, when injected into blastocysts, chimerize placental tissues. Erk2, the downstream effector of Ras-mitogen-activated protein kinase (MAPK) signaling, is asymmetrically expressed in the apical membranes of the 8-cell-stage embryo just before morula compaction. Inhibition of MAPK signaling in cultured mouse embryos compromises Cdx2 expression, delays blastocyst development and reduces trophectoderm outgrowth from embryo explants. These data show that ectopic Ras activation can divert ES cells toward extraembryonic trophoblastic fates and implicate Ras-MAPK signaling in promoting trophectoderm formation from mouse embryos.  相似文献   

20.
Many genes associated with CpG islands undergo de novo methylation in cancer. Studies have suggested that the pattern of this modification may be partially determined by an instructive mechanism that recognizes specifically marked regions of the genome. Using chromatin immunoprecipitation analysis, here we show that genes methylated in cancer cells are specifically packaged with nucleosomes containing histone H3 trimethylated on Lys27. This chromatin mark is established on these unmethylated CpG island genes early in development and then maintained in differentiated cell types by the presence of an EZH2-containing Polycomb complex. In cancer cells, as opposed to normal cells, the presence of this complex brings about the recruitment of DNA methyl transferases, leading to de novo methylation. These results suggest that tumor-specific targeting of de novo methylation is pre-programmed by an established epigenetic system that normally has a role in marking embryonic genes for repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号