首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对SMOTE算法和随机森林可较好解决不平衡数据集的分类问题但对少数类样本分类效果还有待提高的问题,融合Canopy和K-means两种聚类算法,设计了C-K-SMOTE改进算法。先后利用Canopy算法进行快速近似聚类,再利用K-means算法进行精准聚类,得到精准聚类簇,最后利用SMOTE算法增加少数类样本数量,使数据趋于平衡。选取公开数据集KEEL(knowledge extraction on evolutionary learning)数据库中的不平衡数据集,结合随机森林分类模型进行了实验验证,实验表明C-K-SMOTE算法可有效平衡不平衡数据集。  相似文献   

2.
针对现有的不平衡数据处理方法存在不能有效处理分类型数据、盲目采样及抗噪声能力差等问题,提出一种基于k-modes聚类的不平衡数据混合采样算法HS_WODKM;首先提出一种基于加权重叠距离的k-modes聚类算法WODKM,然后采用改进的合成少数过采样技术(SMOTE)算法与WODKM分别对不平衡数据进行过采样与降采样处理,从而获得一种新的不平衡数据混合采样算法HS_WODKM;HS_WODKM采用增加正类样本并减少负类样本的混合采样策略解决样本类别不平衡问题,用来处理分类型数据,并且能够克服现有方法存在的抗噪能力差、删除重要样本等缺陷;为了验证HS_WODKM的性能,在多个分类型UCI数据集上进行实验。结果表明,采用HS_WODKM算法处理分类型不平衡数据是可行且有效的。  相似文献   

3.
面向不平衡数据集的一种精化Borderline-SMOTE方法   总被引:2,自引:0,他引:2  
合成少数类过采样技术(SMOTE)是一种被广泛使用的用来处理不平衡问题的过采样方法,SMOTE方法通过在少数类样本和它们的近邻间线性插值来实现过采样.Borderline-SMOTE方法在SMOTE方法的基础上进行了改进,只对少数类的边界样本进行过采样,从而改善样本的类别分布.通过进一步对边界样本加以区分,对不同的边界样本生成不同数目的合成样本,提出了面向不平衡数据集的一种精化Borderline-SMOTE方法(RB-SMOTE).仿真实验采用支持向量机作为分类器对几种过采样方法进行比较,实验中采用了10个不平衡数据集,它们的不平衡率从0.064 7到0.536 0.实验结果表明:RB-SMOTE方法能有效地改善不平衡数据集的类分布的不平衡性.  相似文献   

4.
少数类样本合成过抽样技术(SMOTE)是一种过抽样数据预处理算法,是在两个少数类之间随机插入一个新的少数类样本.为了解决SMOTE算法生成少数样本随机性的局限性,在考虑多数类样本分布会对少数样本的生成产生影响的基础上,提出了改进的SMOTE算法.在WEKA平台上分别使用改进前后的SMOTE算法对选用的UCI数据集进行过抽样数据预处理,并使用朴素贝叶斯、决策树和K邻近分类器对过抽样后的数据集进行分类,选择几何均数(G-mean)和曲线下面积(AUC)两个评价指标,实验显示改进后的SMOTE算法预处理的数据集的分类效果更好,证明改进后的SMOTE算法生成的少数类样本更加合理.  相似文献   

5.
现有的绝大多数过采样方法着重于寻找少数类样本的边界从而增强样本的可分性,忽略了样本的重叠分布与小析取问题,这导致在过采样阶段产生过多的噪声,最终无法实现对少数类样本的正确分类.针对这些问题,提出一种基于密度峰值聚类和局部稀疏度的过采样算法.首先利用改进的密度峰值聚类算法对全部样本自适应地划分出多个簇,根据簇内样本的不平衡比过滤掉不平衡比过高的簇,然后在筛选出的簇中根据少数类样本的分布情况对各簇的过采样个数进行分配,最后通过样本密度计算出各簇少数类样本的局部稀疏度,从中选择出稀疏度较高的少数类样本参与到最终的合成少数过采样.将提出的过采样算法与八种常用的过采样算法分别与三种基分类器相结合,在18个不平衡数据集上进行对比实验.实验结果表明,提出的算法总体上表现更优,能得到更好的分类性能.  相似文献   

6.
采用少类样本合成过采样技术(SMOTE)与二叉树多类支持向量机(BTSVM)相结合的入侵检测算法来解决实际应用中经常遇到的类别不平衡的分类问题.该方法首先对不平衡类别的训练集使用BTSVM分类,然后对求出各分类器中的支持向量使用SMOTE方法进行向上采样,最后用不平衡类别的测试集在新的分类模型中进行测试.实验结果表明本算法能够有效地提高不平衡数据集的分类性能.  相似文献   

7.
传统的分类算法大多假设数据集是均衡的,追求整体的分类精度.而实际数据集经常是不均衡的,因此传统的分类算法在处理实际数据集时容易导致少数类样本有较高的分类错误率.现有针对不均衡数据集改进的分类方法主要有两类:一类是进行数据层面的改进,用过采样或欠采样的方法增加少数类数据或减少多数类数据;另一个是进行算法层面的改进.本文在原有的基于聚类的欠采样方法和集成学习方法的基础上,采用两种方法相结合的思想,对不均衡数据进行分类.即先在数据处理阶段采用基于聚类的欠采样方法形成均衡数据集,然后用AdaBoost集成算法对新的数据集进行分类训练,并在算法集成过程中引用权重来区分少数类数据和多数类数据对计算集成学习错误率的贡献,进而使算法更关注少数数据类,提高少数类数据的分类精度.  相似文献   

8.
为解决癌症基因组图谱中DNA甲基化数据不平衡导致假阴率上升的问题,提出一种基于TCGA数据库不平衡数据的改进分类方法.使用合成少数类过采样技术和Tomek Link算法进行混合采样,解决数据不平衡问题.在此基础上,将经特征选择后的训练集数据输入改进模型进行训练、学习及分类.基于TCGA数据库6种癌症DNA甲基化数据的实验结果表明:改进方法对少数类样本的分类性能有显著提高,对多数类样本的分类性能也有一定的提升.  相似文献   

9.
网络数据的正确分类对于网络环境的监控和维护具有重要作用。在数据不平衡状态下解决数据分类和处理复杂的特征关系尤为重要,为此提出一种改进SMOTE(synthetic minority over-sampling technique)+GA-XGBoost(genetic algorithm-extreme gradient boosting)的机器学习分类方法。将局部离群因子引入SMOTE插值过程,对少数类样本过采样,并对多数类样本随机欠采样,从而实现样本再平衡;同时,在模型训练过程中为增加模型拟合度,将具有进化迭代优势的遗传算法与XGBoost相结合,解决XGBoost参数众多、特征学习收敛较慢等问题。实验采用UNSW_NB15数据集,选择多层感知机、K近邻、决策树等机器学习算法及SMOTE+XGBoost等不平衡数据训练方法进行试验对比,结果表明该方法具有较好的分类预测准确率(97.40%)及较高的平均召回率(70.2%)和平均F1-score(68.8%)。并在本实验室工业信息安全平台采集的数据进行实验研究,分类准确率为99%,进一步验证了该方法的有效性和可行...  相似文献   

10.
传统的分类器对不均衡数据集的分类严重倾向于多数类。为了有效地提高不均衡数据集中少数类的分类性能,针对此问题提出了一种基于K-means聚类和遗传算法的少数类样本采样方法。通过K-means算法将少数类样本聚类分组,在每个聚类内使用遗传算法获取新样本并进行有效性验证,最后通过使用KNN和SVM分类器,在仿真实验中证明了方法的有效性。  相似文献   

11.
基于K-means聚类和遗传算法的少数类样本采样方法研究   总被引:1,自引:0,他引:1  
传统的分类器对不均衡数据集的分类严重倾向于多数类.为了有效地提高不均衡数据集中少数类的分类性能,针对此问题提出了一种基于K-means聚类和遗传算法的少数类样本采样方法.通过K-means算法将少数类样本聚类分组,在每个聚类内使用遗传算法获取新样本并进行有效性验证,最后通过使用KNN和SVM分类器,在仿真实验中证明了方法的有效性.  相似文献   

12.
不平衡数据集广泛存在,对其的有效识别往往是分类的重点,但传统的支持向量机在不平衡数据集上的分类效果不佳.本文提出将数据采样方法与SVM结合,先对原始数据中的少类样本进行SMOTE采样,再使用SVM进行分类.人工数据集和UCI数据集的实验均表明,使用SMOTE采样以后,SVM的分类性能得到了提升.  相似文献   

13.
张阳  张涛  陈锦  王禹  邹琪 《北京理工大学学报》2019,39(12):1258-1262
网络入侵检测已经广泛运用机器学习模型,但是研究者们多关注模型选择和参数优化,很少考虑数据不平衡的影响,往往会导致少数类入侵样本的检测效果较差.针对该问题,以SMOTE (synthetic minority oversampling technique)数据再平衡算法为研究重点,应用入侵检测数据集KDD99作为原始训练集,使用简单抽样和SMOTE算法生成再平衡训练集.采用多种机器学习模型分别在原始训练集和再平衡训练集进行5折交叉验证.实验结果表明,与原始训练集相比,使用再平衡训练集建模能够在不降低甚至提高多数类样本识别效果前提下,使少数类样本的识别准确率和召回率增强10%~20%.因此,SMOTE算法对不平衡样本下的网络入侵检测有显著的提升作用.   相似文献   

14.
结合三支决策和合成少数过采样技术(synthetic minority over-sampling technique, SMOTE),提出了一种新的采样方法—三支过采样(three-way over-sampling, 3WOS)。3WOS通过对所有样本构建三支决策模型,选取该模型边界域中的样本作为关键样本进行SMOTE过采样,从而有效缓解样本聚集和分离问题,在一定程度上提高了分类器性能。该方法首先在少数类样本上应用三支决策和支持向量数据描述,将所有样本数据进行三分;其次,找出所有关键样本的k个最近邻少数类样本,并使用线性插值方式对每个关键样本合成新样本,然后形成新的少数类样本;最后,将更新后的样本集用于训练分类器。实验结果表明,3WOS方法比其他方法在基分类器上有较好的分类准确度、F-measure、G-mean和较少的代价值。  相似文献   

15.
针对传统的合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)在类别区域重合的数据集应用时,可能产生多个更接近多数类的人工样例,甚至突破类别边界,从而影响整体分类性能的情况,提出了一种最近三角区域的SMOTE方法,使合成的人工样例只出现在少数类样例的最近三角区域内部,并且删除掉距离多数类更近的合成样例,从而使生成的样例更接近少数类,且不突破原始的类别边界。实验分别在人工数据集和改进的UCI数据集上进行,并和原始的SMOTE方法分别在G-mean和F-value的评价指标上进行了对比。实验结果验证了改进的SMOTE方法在类别区域有重合的数据集上要优于原始SMOTE方法。  相似文献   

16.
非平衡数据集是指数据集中的某类样本数量远大于其他样本的数量。对于此类数据,类分布的不平衡会直接导致很多分类算法的失效。文中基于K-means聚类,Silhouette指标和M-近邻下采样提出一种新的数据平衡方法(K-S-M)。该方法首先用K-means算法对多数类样本进行多次聚类并选取最优聚类个数,然后采用M-近邻下采样对聚类后的数据进行采样,将采样后的点最终构成平衡数据,并对得到的平衡数据进行癫痫性发作的自动检测。实验结果表明,文中所提方法可以很好地处理非平衡数据,减少数据信息损失,同时可以提高非平衡数据分类的有效性。  相似文献   

17.
在污水处理过程故障会导致出水水质下降、运行费用增高甚至造成环境的二次污染,而污水处理故障诊断数据的典型不平衡特性,严重影响了故障诊断的效果,尤其会导致故障分类的正确率偏低.针对此问题,文中提出了一种基于加权极限学习机的改进Bagging集成污水处理故障诊断建模方法;以加权极限学习机为基分类器,以Bagging集成框架建立集成分类器;定义可调整的过采样倍率公式,通过虚拟少数过采样算法(SMOTE)对少数类样本进行过采样,以保证基分类器间的多样性;以不平衡分类性能指标G-mean值为基础,定义新的基分类器输出权值更新公式,以提高故障类别识别率.仿真实验表明,该污水处理故障诊断模型的性能优于其他对比算法,可有效提高G-mean值和整体分类正确率,特别是提高了故障类别的识别正确率.  相似文献   

18.
针对不平衡数据集数据分布不均匀及边界模糊的特点,提出基于局部密度改进的SVM不平衡数据集分类算法.该算法先将多数类划分成多个子类,并依据子类内每个样本的局部密度选出边界区域、靠近边界区域的与少数类数目相等的样本,与少数类完成SVM初始分类;用所得的支持向量机和剩余的多数类样本对初始分类器进行迭代优化.结果表明,与WSVM,ALSMOTE-SVM和基本SVM算法相比,该算法分类效果良好,能有效改进SVM算法在分布不均匀及边界模糊数据集上的分类性能.  相似文献   

19.
针对因电动汽车故障数据样本类别不平衡引起的机器模型分类性能欠佳、故障查全率低的问题,本文提出一种以LightGBM为基学习器改进的Bagging集成电动汽车故障预测模型:在Bagging集成学习中使用Borderline_SMOTE方法对训练集重新采样,改善训练子集的数据不平衡程度,避免小类样本信息缺失;将权重系数和正则化项嵌入LightGBM基学习器的损失函数中,提高训练中小类样本的错分类代价。实验结果表明,该模型可有效提高故障查全率、宏平均和AUC值,其中AUC值达到0.898 4,故障样本的查全率为0.808 3,在电动汽车不平衡数据集上的故障分类性能显著优于传统单一模型和其他对比算法。  相似文献   

20.
类别不平衡问题是机器学习与数据挖掘领域中主要关注的问题之一,目前已有多种解决方法,而样本采样技术是其中最为简单有效、同时也是最为常用的一类方法.本文主要针对SMOTE(synthetic minority oversampling technique)这一最为流行的采样算法易于受到噪声样本影响及泛化能力差的缺点,提出了一种基于概率密度估计的改进算法.首先,假定各类样本均服从高斯混合分布,并采用高斯混合模型测得各样本的概率密度,针对各样本在类内与类间所测得概率密度间的排序比较关系来实现噪声信息的过滤.其次,在过滤后的少数类样本上进行概率密度的重新计算,并根据其特点将其划分为三类:边界样本、安全样本与离群样本.最后,针对上述三类样本,分别采取不同的策略来进行SMOTE采样.此外,为了进一步提升泛化性能,本文也对SMOTE算法的邻域计算规则进行了修正.通过多个基准的二类不平衡数据集对该算法进行了验证,实验结果表明其是有效且可行的,同时显著优于多种已有的采样算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号