首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
On-chip natural assembly of silicon photonic bandgap crystals.   总被引:20,自引:0,他引:20  
Y A Vlasov  X Z Bo  J C Sturm  D J Norris 《Nature》2001,414(6861):289-293
Photonic bandgap crystals can reflect light for any direction of propagation in specific wavelength ranges. This property, which can be used to confine, manipulate and guide photons, should allow the creation of all-optical integrated circuits. To achieve this goal, conventional semiconductor nanofabrication techniques have been adapted to make photonic crystals. A potentially simpler and cheaper approach for creating three-dimensional periodic structures is the natural assembly of colloidal microspheres. However, this approach yields irregular, polycrystalline photonic crystals that are difficult to incorporate into a device. More importantly, it leads to many structural defects that can destroy the photonic bandgap. Here we show that by assembling a thin layer of colloidal spheres on a silicon substrate, we can obtain planar, single-crystalline silicon photonic crystals that have defect densities sufficiently low that the bandgap survives. As expected from theory, we observe unity reflectance in two crystalline directions of our photonic crystals around a wavelength of 1.3 micrometres. We also show that additional fabrication steps, intentional doping and patterning, can be performed, so demonstrating the potential for specific device applications.  相似文献   

2.
Optoelectronic devices are increasingly important in communication and information technology. To achieve the necessary manipulation of light (which carries information in optoelectronic devices), considerable efforts are directed at the development of photonic crystals--periodic dielectric materials that have so-called photonic bandgaps, which prohibit the propagation of photons having energies within the bandgap region. Straightforward application of the bandgap concept is generally thought to require three-dimensional (3D) photonic crystals; their two-dimensional (2D) counterparts confine light in the crystal plane, but not in the perpendicular z direction, which inevitably leads to diffraction losses. Nonetheless, 2D photonic crystals still attract interest because they are potentially more amenable to fabrication by existing techniques and diffraction losses need not seriously impair utility. Here we report the fabrication of a waveguide-coupled photonic crystal slab (essentially a free-standing 2D photonic crystal) with a strong 2D bandgap at wavelengths of about 1.5 microm, yet which is capable of fully controlling light in all three dimensions. These features confirm theoretical calculations on the possibility of achieving 3D light control using 2D bandgaps, with index guiding providing control in the third dimension, and raise the prospect of being able to realize unusual photonic-crystal devices, such as thresholdless lasers.  相似文献   

3.
Monodisperse silica spheres of 252 nm with a standard deviation of 5.7% are prepared by Stber method. By compari-son of both of media, ethanol instead of water is used to assemble opal, and the artiflcial opal has been prepared by the sedimentation inethanol of silica spheres. The structure of the opal prepared has been examined and discussed. The results show that the artificial opal hasa structure similar to the face-centered cubic (fcc) type packed system with silica spheres. Transmission measurements of the artificial opalhave been conducted, which shows that the artificial opal is quasi-full band gap silica photonic crystals in the visible region.  相似文献   

4.
Control of spontaneously emitted light lies at the heart of quantum optics. It is essential for diverse applications ranging from miniature lasers and light-emitting diodes, to single-photon sources for quantum information, and to solar energy harvesting. To explore such new quantum optics applications, a suitably tailored dielectric environment is required in which the vacuum fluctuations that control spontaneous emission can be manipulated. Photonic crystals provide such an environment: they strongly modify the vacuum fluctuations, causing the decay of emitted light to be accelerated or slowed down, to reveal unusual statistics, or to be completely inhibited in the ideal case of a photonic bandgap. Here we study spontaneous emission from semiconductor quantum dots embedded in inverse opal photonic crystals. We show that the spectral distribution and time-dependent decay of light emitted from excitons confined in the quantum dots are controlled by the host photonic crystal. Modified emission is observed over large frequency bandwidths of 10%, orders of magnitude larger than reported for resonant optical microcavities. Both inhibited and enhanced decay rates are observed depending on the optical emission frequency, and they are controlled by the crystals' lattice parameter. Our experimental results provide a basis for all-solid-state dynamic control of optical quantum systems.  相似文献   

5.
采用垂直沉积法制备了三维SiO2光子晶体模板。以醋酸锌为前躯体,成功制备了SiO2/ZnO三维复合光子晶体。扫描电子显微镜测试结果表明SiO2和SiO2/ZnO光子晶体均为面心立方结构排列。光学测试表明SiO2和SiO2/ZnO周期性阵列均在[111]方向出现了光子带隙。当具有较高折射率的ZnO材料包覆后,SiO2/ZnO 光子晶体[111]方向光子带隙的中心波长发生红移,光子晶体基元材料的有效折射率有所增加。同时,光子晶体的光学性质与样品内部的缺陷态密度密切相关。  相似文献   

6.
光子晶体材料的介电常数在空间中呈周期分布,这种材料存在光子带隙,引入缺陷对光有局域效应,为更好地控制光和利用光提供了新的方法。文章利用传输矩阵法计算了一维光子晶体不同结构的带隙特征,计算表明光子带隙的宽度受到材料介电常数及介质层厚度的影响。随材料介电常数及介质层厚度的增加,光子带隙宽度存在一个极大值,对于确定材料构成的光子晶体,两介质等厚时带隙最宽。  相似文献   

7.
The optical reflective spectra and microstruc- tures of polystyrene opal photonic crystals treated with dif- ferent temperatures have been investigated. With tempera- ture increasing, the polystyrene spheres in opal structure transform to dodecahedrons, and the peak of reflective spec- trum moves to shorter wavelength. The experiment result testifies the effect of the effective refractive index and the filling ratio to the bandgap position, and it corresponds to the theoretical simulative result.  相似文献   

8.
SiO2 photonic crystal were successfully prepared by vertical deposition and then used as a template to fabricate SiO2-ZnO composite photonic crystals on ITO substrates by electrodeposition and subsequent calcination. A number of different deposition times were used. The morphologies of the silica opals and SiO2-ZnO composite photonic crystals were investigated by scanning electron microscopy. It was found that ZnO particles grew randomly on the surfaces of the silica spheres when the deposition time was short. As the deposition time was increased, the ZnO particles grew evenly on the surfaces of the silica spheres so that the interstitial space of the silica template was filled with ZnO particles. Reflectance spectra of the SiO2-ZnO composite crystals revealed that all of the fabricated photonic crystals exhibit a photonic band gap in the normal direction.  相似文献   

9.
Man W  Megens M  Steinhardt PJ  Chaikin PM 《Nature》2005,436(7053):993-996
Quasicrystalline structures may have optical bandgap properties-frequency ranges in which the propagation of light is forbidden-that make them well-suited to the scientific and technological applications for which photonic crystals are normally considered. Such quasicrystals can be constructed from two or more types of dielectric material arranged in a quasiperiodic pattern whose rotational symmetry is forbidden for periodic crystals (such as five-fold symmetry in the plane and icosahedral symmetry in three dimensions). Because quasicrystals have higher point group symmetry than ordinary crystals, their gap centre frequencies are closer and the gaps widths are more uniform-optimal conditions for forming a complete bandgap that is more closely spherically symmetric. Although previous studies have focused on one-dimensional and two-dimensional quasicrystals, where exact (one-dimensional) or approximate (two-dimensional) band structures can be calculated numerically, analogous calculations for the three-dimensional case are computationally challenging and have not yet been performed. Here we circumvent the computational problem by doing an experiment. Using stereolithography, we construct a photonic quasicrystal with centimetre-scale cells and perform microwave transmission measurements. We show that three-dimensional icosahedral quasicrystals exhibit sizeable stop gaps and, despite their quasiperiodicity, yield uncomplicated spectra that allow us to experimentally determine the faces of their effective Brillouin zones. Our studies confirm that they are excellent candidates for photonic bandgap materials.  相似文献   

10.
光子晶体的发展和应用   总被引:3,自引:0,他引:3  
20世纪80年代末出现的光子晶体是一种具有光子带隙的新材料,它独特的性质使得光子晶体具有广泛的应用前景.该文介绍了三维光子晶体的制备技术,并综述了光子晶体的一些物理特性及在光学、微波方面的应用.  相似文献   

11.
Fleming JG  Lin SY  El-Kady I  Biswas R  Ho KM 《Nature》2002,417(6884):52-55
Three-dimensional (3D) metallic crystals are promising photonic bandgap structures: they can possess a large bandgap, new electromagnetic phenomena can be explored, and high-temperature (above 1,000 degrees C) applications may be possible. However, investigation of their photonic bandgap properties is challenging, especially in the infrared and visible spectrum, as metals are dispersive and absorbing in these regions. Studies of metallic photonic crystals have therefore mainly concentrated on microwave and millimetre wavelengths. Difficulties in fabricating 3D metallic crystals present another challenge, although emerging techniques such as self-assembly may help to resolve these problems. Here we report measurements and simulations of a 3D tungsten crystal that has a large photonic bandgap at infrared wavelengths (from about 8 to 20 microm). A very strong attenuation exists in the bandgap, approximately 30 dB per unit cell at 12 microm. These structures also possess other interesting optical properties; a sharp absorption peak is present at the photonic band edge, and a surprisingly large transmission is observed in the allowed band, below 6 microm. We propose that these 3D metallic photonic crystals can be used to integrate various photonic transport phenomena, allowing applications in thermophotovoltaics and blackbody emission.  相似文献   

12.
利用光学传输矩阵方法,分析了TE模式光波的入射角度分别与禁带宽度、光子带隙起始波长的关系,通过优化计算得到了一系列特殊带隙结构的光子晶体,揭示了光子晶体的带隙变化规律,对不同禁带范围的要求选取恰当参数来制备所需要的光子晶体提供了理论依据。  相似文献   

13.
Noda S  Chutinan A  Imada M 《Nature》2000,407(6804):608-610
By introducing artificial defects and/or light-emitters into photonic bandgap structures, it should be possible to manipulate photons. For example, it has been predicted that strong localization (or trapping) of photons should occur in structures with single defects, and that the propagation of photons should be controllable using arrays of defects. But there has been little experimental progress in this regard, with the exception of a laser based on a single-defect photonic crystal. Here we demonstrate photon trapping by a single defect that has been created artificially inside a two-dimensional photonic bandgap structure. Photons propagating through a linear waveguide are trapped by the defect, which then emits them to free space. We envisage that this phenomenon may be used in ultra-small optical devices whose function is to selectively drop (or add) photons with various energies from (or to) optical communication traffic. More generally, our work should facilitate the development of all-optical circuits incorporating photonic bandgap waveguides and resonators.  相似文献   

14.
研究了一种由硅基光子晶体与金属复合微纳结构薄膜中的全向光吸收效应。与完整的硅/金属复合薄膜进行比较研究发现,在硅薄膜厚度相同的条件下硅基微纳结构薄膜能够使吸光度提高近70%。此外,结果显示这种光吸收增强效应对入射角度的变化不敏感。在以0°~60°角度入射的情况下,硅微纳结构薄膜都能够具备接近100%的光吸收。通过对能带以及场构型分析可以发现,这种现象产生的原因归结于金属平板与截断光子晶体中特殊的边界陷光效应和六角晶格的全向带隙。  相似文献   

15.
用改进St ber法制备出单分散的SiO2胶球.通过离心沉降法将SiO2胶球有序排列,得到蛋白石结构的SiO2光子晶体,该方法可制备出较大尺寸的蛋白石结构光子晶体.以得到的SiO2光子晶体为模板,通过化学反应向模板间隙填入Sb2S3后再经氢氟酸腐蚀去除二氧化硅胶晶模板,制备出反蛋白石结构硫化锑光子晶体.  相似文献   

16.
Foster MA  Turner AC  Sharping JE  Schmidt BS  Lipson M  Gaeta AL 《Nature》2006,441(7096):960-963
Developing an optical amplifier on silicon is essential for the success of silicon-on-insulator (SOI) photonic integrated circuits. Recently, optical gain with a 1-nm bandwidth was demonstrated using the Raman effect, which led to the demonstration of a Raman oscillator, lossless optical modulation and optically tunable slow light. A key strength of optical communications is the parallelism of information transfer and processing onto multiple wavelength channels. However, the relatively narrow Raman gain bandwidth only allows for amplification or generation of a single wavelength channel. If broad gain bandwidths were to be demonstrated on silicon, then an array of wavelength channels could be generated and processed, representing a critical advance for densely integrated photonic circuits. Here we demonstrate net on/off gain over a wavelength range of 28 nm through the optical process of phase-matched four-wave mixing in suitably designed SOI channel waveguides. We also demonstrate wavelength conversion in the range 1,511-1,591 nm with peak conversion efficiencies of +5.2 dB, which represents more than 20 times improvement on previous four-wave-mixing efficiencies in SOI waveguides. These advances allow for the implementation of dense wavelength division multiplexing in an all-silicon photonic integrated circuit. Additionally, all-optical delays, all-optical switches, optical signal regenerators and optical sources for quantum information technology, all demonstrated using four-wave mixing in silica fibres, can now be transferred to the SOI platform.  相似文献   

17.
介绍了光子晶体的产生、发展历程和制备方法等,实验研究了采用MOCVD技术制备的InP反蛋白石结构三维光子晶体,获得了较好的填充率和结晶质量.为制备三维全带隙InP光子晶体提供了科学依据.  相似文献   

18.
耦合腔光波导是由光子晶体点缺陷的缺陷模式相互耦合而实现的,群速度是其重要的性能指标?本文模拟了由N掺杂半导体硅构成的光子晶体耦合腔光波导的能带结构?模拟发现,借助N掺杂半导体硅的法拉第效应,逆着光的传播方向施加磁场,缺陷模式所对应的相对介电参数会变小,群速度也随之逐渐降低,可以获得2.088×10-4c的群速度,证实了法拉第磁光效应对波导群速度的调控作用?这一性能为如何在太赫兹或更低频段实现慢光效应提供了一种新的有效方式?  相似文献   

19.
THz通信及检测等应用领域迫切需要THz窄带滤波及频分复用等损耗小可集成的器件,设计了一种基于光子晶体点缺陷和线缺陷的THz频分复用器。该系统是在空气和高阻硅构成的二维正方形结构光子晶体中设置两个线缺陷实现上下载波导功能,同时设置两个间隔的空气点缺陷实现频率选择功能。利用平面波展开法和时域有限差分方法,分析了这种结构的光子晶体缺陷模特征及线缺陷和点缺陷之间的耦合特征,下载波导输出端的频谱表明在0.927THz和1.184THz处有两个窄带输出峰,当改变两个空气点缺陷之间的硅柱半径时,两个窄带峰的中心频率可调。  相似文献   

20.
介电常数沿不同方向周期性变化的woodpile结构三维光子晶体存在完全带隙,可以实现立体空间中对光的控制传输。鉴于此,采用时域有限差分方法研究了椭圆截面和长方形截面介质柱形成的光子晶体的完全带隙。结果发现,这两种情况都存在很好的完全带隙,且带隙的宽度受到介质柱不同截面形状的有效调节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号