首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 468 毫秒
1.
超细钝感HMX小尺寸沟槽装药爆轰波传播速度的测试与分析   总被引:1,自引:0,他引:1  
为了研究超细钝感HMX在小尺寸沟槽装药条件下爆速与装药尺寸的关系,设计加工了实验基板,建立了爆速测试方法,分别测定了不同沟槽尺寸下的爆速. 通过对数据进行分析处理,得出了超细钝感HMX的极限爆速为8.56mm·μs-1,极限尺寸为1.2mm×1.2mm,并分别给出了该炸药装药爆速与装药尺寸关系的半经验与经验关系式,为该炸药在微火工领域的应用提供了依据.  相似文献   

2.
RDX颗粒形态对RDX基熔铸炸药性能的影响   总被引:2,自引:0,他引:2  
为了提高弹药的爆轰性能,该文提出通过改变单质炸药的颗粒形态来提高炸药的装药性能。给出了重结晶法制备球形化RDX颗粒的实验原理和流程,测试了球形化RDX的晶体形状、热性能和热感度,以及以球形化RDX为基的熔铸炸药药柱密度。结果表明,与普通RDX颗粒相比,球形化RDX颗粒表面光滑,内部缺陷显著减少,熔化峰温提高1.57℃,分解峰温提高3.66℃;5 s爆发点提高1℃,安全性能有所提高;球形化RDX60/TNT40和RDX75/TNT25熔铸炸药的装药密度明显高于普通RDX60/TNT40和RDX75/TNT25熔铸炸药。  相似文献   

3.
该文结合HFZ工业粉状炸药的实验研究,提出了一种适用于工业炸药在Φ32mm粘蜡纸筒装药条件下爆速估算的数学模型。与传统的爆速体积加和公式比较,该模型能更准确地估算工业炸药在不同配方,不同装药密度下,或者在同一配方,相同装药密度,不同药温时的爆速。  相似文献   

4.
3,4-二硝基吡唑(DNP)在能量密度、安定性等方面性能优异,是具有广阔应用前景的新型熔铸炸药载体. 为研究DNP基熔铸炸药装药工艺和成型规律,以DNP/HMX(40/60)熔铸炸药为实验配方,采用数值模拟与实验验证相结合的方法,研究冒口预热工艺对DNP/HMX熔铸炸药装药冷却凝固时间与装药缺陷的影响规律,并在此基础上通过数值模拟方法研究大尺寸DNP/HMX熔铸炸药成型工艺. 结果表明:冒口预热工艺能够改变装药内部凝固顺序,保证补缩通道持续畅通,从而有效减少药柱内缩松产生;装药尺寸对炸药成型过程影响显著:随着装药尺寸增加,相同工艺条件下药柱冷却耗时大幅延长,缩松占比明显上升,需要更高冒口预热温度消除药柱内缩松;尺寸超过临界值后,仅靠冒口预热工艺已无法消除药柱内部缩松.   相似文献   

5.
针对含HMX或RDX的熔铸炸药降低冲击感度、提高使用安全性的需要,以最大熵为评价准则提出了钝感熔铸炸药的配方设计方法,并以此方法获得了能量和安全性俱佳的钝感熔铸炸药配方.选取NQ/HMX/TNT-36.1/33.9/30.0和NQ/RDX/TNT-34.5/25.5/40.0配方制备熔铸装药试样并进行爆速和枪击感度测试,结果显示两试样分别相对Octol 70/30和Cyclotol 60/40爆速仅降低2%~4%,但枪击感度大幅度降低,说明两试样在能量损失较小的情况下安全性大幅度提高,使能量和安全性俱佳,证明了本配方设计方法的可行性.  相似文献   

6.
对多元炸药装药的冲击起爆过程进行了数值模拟研究,得到了改变炸药装药层叠顺序后的压力时程曲线.通过分析比较发现:当起爆过程从高爆速炸药传入低爆速炸药时,压力波形过渡平稳,在低爆速炸药到达CJ点时会出现短暂的超压爆轰现象;当起爆过程从低爆速炸药传入高爆速炸药时,会出现回爆现象,压力波形出现双峰,这对于被驱动系统的二次加载是有价值的.  相似文献   

7.
通过建立玻璃微球型乳化炸药爆轰反应数学模型,从微观力学角度分析研究了玻璃微球敏化的乳化炸药爆轰机理,理论计算了其爆轰反应区长度、爆轰反应时间以及爆压、爆热、爆速等爆炸特性参数,计算结果与实验结果能够较好地吻合.研究结果表明乳化炸药爆轰反应区宽度和爆轰反应时间随着装药密度的增加而增加,其中爆轰反应区宽度的增加是导致乳化炸药爆速不随装药密度线性增加的主要原因.  相似文献   

8.
分析了高密度成型炸药装药的燃烧转爆轰(DDT)过程及其特性,采用电探针法分别研究了钝感剂以及熔铸与压装两种装药工艺对炸药DDT的影响,对比了不同条件下炸药发生DDT的诱导爆轰距离。结果表明,高密度成型装药的DDT过程,主要是燃烧压缩波汇聚形成冲击波,并诱发爆轰的机制。由于钝感剂具有较大热容和较小导热系数,炸药中加入钝感剂,使炸药的诱导爆轰距离变大。熔铸炸药抗压强度低于压装炸药,且呈一定的脆性,在燃烧过程中易发生破碎,导致燃烧面增大,并进一步提高燃速,因此熔铸工艺可以减小炸药的诱导爆轰距离。  相似文献   

9.
为研究火炮发射过程弹体内部装药的损伤响应,采用节点约束-分离模拟方法对TNT和PBX9501炸药装药进行数值模拟,计算不同发射速度下弹体内部装药的损伤及破坏,计算得到了TNT和PBX9501装药损伤的临界弹体初速以及加速度载荷,数值模拟结果与实验结果吻合较好. 研究结果表明,采用节点约束-分离方法可以较好地描述弹体发射过程中内部炸药装药的损伤响应.  相似文献   

10.
不同厚度壳体装药在混凝土中爆炸的实验研究   总被引:3,自引:2,他引:1  
为研究装药壳体厚度对混凝土毁伤效果的影响,设计了不同厚度壳体装药和无边界效应的混凝土靶板,并进行了实验.实验结果表明,在壳体厚度较小时,爆坑体积比裸装药炸药时的爆坑体积大;当壳体厚度增大时,爆坑体积呈下降趋势.随着壳体厚度的增加,壳体破碎性下降.通过空气冲击波超压测试,并结合经验公式计算了形成空气冲击波的能量占炸药爆炸总能量的比例.  相似文献   

11.
利用电磁法研究炸药爆轰时,必然存在由导电的爆炸产物在磁场中运动而产生的附加电磁场。为了能有效地排除爆炸产物导电性影响,该文提出了爆炸产物导电性对粒子速度计记录影响的数学物理模型,用改变负载电阻值的方法,测量粒子速度计和产物计的输出特性——动态电导与零负载电流随时间的变化,利用排除爆炸产物导电性影响的处理程序,对压装TNT炸药粒子速度模拟信号进行分析与处理.结果证明,无绝缘层的粒子速度计记录经这样的处理程序修正后,电磁法所测的TNT炸药爆轰参数与其它方法所测的结果相比,不再偏低。  相似文献   

12.
利用Lagrange实验结果和改进的Lagrange分析方法,对固体炸药在动高压流场中的本构方程进行了整体标定.未反应炸药和已反应产物都采用JWL状态方程.分析得到了每个Lagrange位置上的压力p,质量速度u,比容v,比内能随e时间的变化过程,同时可标定基于JWL状态方程的固体炸药的点火与增长型反应速率方程.标定的JWL状态方程和点火与增长型反应速率方程具有良好的相容性,参数可以直接用于动力学计算程序LS-DYNA3D.本文对铸装TNT炸药的二维起爆过程进行了计算.  相似文献   

13.
为研究石墨颗粒对混合炸药爆轰性能及爆轰传播的影响,运用有限元分析软件建立了混合炸药二维平面细观结构模型,对不同石墨含量、粒度混合炸药的爆轰传播过程进行了数值模拟,结果表明,爆速的模拟计算结果与实验规律一致,沿着爆轰传播的方向,石墨颗粒内部压力逐渐提高,周围炸药的压力也逐渐升高,形成了特殊的爆轰流场压力分布.   相似文献   

14.
为检测爆炸地震波的品质(能量,主频),探寻激发高能量、高频率地震波的炸药震源,选用梯恩梯(TNT)、梯铝(TL)、8701,黑火药(BP)进行浅埋土中爆炸试验. 并利用Hilbert-Huang变换(HHT)对距离震源10~65 m处地面振动速度信号进行分析,结果表明:高能量高爆速炸药8701震源激发的地震波能量大,但频带较窄,主频较低,高频率段能量随传播距离衰减较快;低能量低爆速炸药BP激发的地震波频带较宽,主频也较高,但地震波能量过低;含铝炸药TL激发的地震波能量大,且随传播距离衰减速度较慢,主频介于黑火药BP与炸药8701之间.   相似文献   

15.
PETN炸药爆轰参数的数值模拟   总被引:1,自引:1,他引:0  
用吉布斯自由能最小原理,通过解化学平衡方程组,求解PETN炸药爆轰产物系统的平衡组分,计算结果与用BKW和LJD方法计算的结果相近.用自编的程序从碳的石墨相、金刚石相、类石墨液相和类金刚石液相4种相态中确定出炸药爆轰产物中游离碳更可能存在的相态,并用此相态计算碳的Gibbs自由能,以WCA状态方程作为爆轰气相产物的物态方程,对PETN炸药爆轰参数作了预言,爆轰CJ点的爆速、爆压和爆温的计算结果与实验值吻合得很好.  相似文献   

16.
炸药爆轰合成超微金刚石的数值模拟   总被引:2,自引:0,他引:2  
在相变模型基础上对炸药爆轰过程中超微金刚石的合成进行数值模拟,用简单反应速率函数估算炸药爆轰反应区的热力学参数,用动力学有限元程序DYNA2D模拟爆轰产物的膨胀过程,按均匀成核和长大两步模拟爆轰过程中游离碳相变成金刚石的过程,同时考虑金刚石在爆轰产物膨胀过程中的石墨化。计算了不同装药条件和保护条件下金刚石的成核率,长大线速度,石墨化率,金刚石得率及粒径分布等信息,对计算结果进行分析和讨论。  相似文献   

17.
两级爆轰驱动装置发射弹丸的实验和数值模拟   总被引:1,自引:1,他引:0  
为研究利用多级爆轰驱动发射高速爆炸成型弹丸的可行性,利用两级爆轰驱动进行发射爆炸成型弹丸的实验研究.二级爆轰驱动系统的次级被置换为成型装药,研究改变装药高度对弹丸速度的影响,并利用数值模拟对实验的结果进行比对.实验结果和数值模拟结果吻合良好.实验结果表明,二级爆轰驱动装置比传统一级成型装药能大幅提高爆炸成型弹丸的速度,具有发射大于3km/s弹丸的能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号