首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
反倾层状岩质边坡变形破坏的颗粒流模拟研究   总被引:1,自引:0,他引:1  
基于颗粒流程序对反倾层状岩质边坡变形破坏过程进行模拟,并考虑岩体结构面参数(岩层倾角、层厚及层理剪切强度)对其变形破坏机制的影响。数值模拟结果表明:边坡岩层的主要变形破坏方式为弯曲变形、折断破坏,变形首先发生在坡顶,而破坏是从坡脚开始,边坡的变形破坏过程具有明显的悬臂梁特征;岩层倾角对反倾岩质边坡整体性失稳破坏方式有较大影响,随着岩层倾角的增大,边坡后期整体性破坏方式由滑移型逐渐过渡为倾倒型破坏,坡体内部岩体出现变形及破裂损伤的深度也逐渐增加;随着岩层厚度增加,坡脚岩体抗折断能力增强,破坏方式由折断破坏向剪切破坏发展,边坡后期的整体性破坏方式也由滑移型向倾倒型过渡;岩层层面剪切强度是影响边坡变形的重要因素,层面剪切强度越小,边坡发生弯曲变形的程度越大。  相似文献   

2.
文章在层状岩质边坡倾倒变形破坏地质现象调查分析和模拟试验的基础上,借用物理学概念定义了边坡倾倒变形角位移ω,并运用数理统计等方法对倾倒变形边坡岩体结构、倾倒岩体折断面形态和岩层倾角变化进行系统研究。研究表明层状边坡弯曲—倾倒—折断破坏后岩体具有不同的结构特征,并以此对边坡倾倒变形强烈程度进行分类;岩体折断面的形态可概括为直线、折线和近弧线等3种类型,以折线最为常见;倾倒变形岩体层面倾角与坡高呈"负指数"关系,建立了以倾倒岩体角位移ω为核心的山区岩质边坡倾倒变形强烈程度分级体系。  相似文献   

3.
反倾岩质边坡的岩性特征、坡角、岩层倾角等自身特性主导了边坡的变形破坏的模式和稳定性.针对这一问题,国内外学者在均质反倾岩质边坡方面已经取得了丰富的研究成果并达成共识,然而,对于软硬互层的反倾岩质边坡其研究工作开展较少.鉴于此,本文以phase2为工具,采用数值模拟手段对软硬互层的反倾岩质边坡的稳定性和破坏模式进行研究.计算结果表明:软硬互层反倾岩质边坡的安全系数随着坡角β的增加逐渐降低.当坡角小于60°时,岩层倾角和软岩/硬岩层厚比的增加均会导致稳定性变差.当坡角大于60°时,岩层倾角和软岩/硬岩层厚比对稳定性影响很小;当坡角或岩层倾角小于45°时,软硬互层反倾岩质边坡破坏的倾倒特征并不明显,当坡角或岩层倾角大于45°时,随着坡角或岩层倾角的增加,边坡破坏的起始区域由边坡坡脚前缘向边坡坡面上部转移,随着软岩/硬岩层厚比的增加边坡的破坏面逐渐由直线型向圆弧形发展.  相似文献   

4.
反倾层状边坡倾倒变形破坏模式的岩层等厚度特性研究   总被引:1,自引:0,他引:1  
为检验等厚层状特性这一假定条件在反倾岩质边坡研究中的适用性,以重庆市硝洞槽-郑家大沟反倾层状岩质岸坡为实例进行数值模拟验证。首先建立二维简化工程地质模型;并利用离散元软件(UDEC)对反倾边坡在相邻岩层不同厚度比值(1.0∶0.1)~(1.0∶1.0)条件下分别进行数值模拟计算。然后对比分析不同岩层厚度比值条件下边坡弯曲倾倒变形特征,得出了反倾层状边坡倾倒变形随相邻岩层厚度比值变化规律。最后通过工程实例对研究结做进一步验证。主要得出以下结论:1相邻岩层厚度越相近边坡越易发生弯曲倾倒变形;2仅当相邻岩层厚度比值处于(1.0∶0.8)~(1.0∶1.0)范围内时,反倾边坡才能可视为等厚层状分布。  相似文献   

5.
为了研究反倾层状岩体倾倒变形的发育深度,结合倾倒变形发展演化过程的时效性特点,将岩层抽象为在自重及层间应力作用下的弯曲悬臂梁,选取Kelvin流变模型,以变形发育极限位置处拉应变为零作为发育深度的判据,计算得出了层状岩体倾倒变形的发育深度;并利用发育深度恒为正的特点得到了倾倒变形发生的判据条件。计算结果表明,层状岩体倾倒变形发育深度受岩性条件及坡体结构的影响;而倾倒变形发生与否则主要受到岩层倾角、边坡坡角及层间内摩擦角的影响。结论可以为倾倒变形边坡变形规模判断及稳定性分析提供依据。  相似文献   

6.
运用FLAC~(3D)有限差分软件建立了含软弱夹层顺倾层状锚固岩体边坡计算模型,并利用改进的cable单元建模获取了锚固界面即砂浆-岩体界面和锚杆-砂浆界面上的剪应力,研究了地震作用下软弱夹层参数(数量、间距、厚度、倾角)对边坡锚固界面剪应力和边坡稳定性的影响.研究表明:随着软弱夹层参数的变化,边坡主破坏面位置不变,主要的破坏模式分为沿着主软弱夹层的整体性倾倒-滑移破坏和层间错动倾倒-滑移破坏.因两锚固界面的极限粘结强度不同,砂浆-岩体界面脱粘程度更大,这与工程实际相符合.锚固界面剪应力峰值和坡面永久位移随软弱夹层数量、厚度的增大而增大,随软弱夹层间距、倾角的增大而减小.该研究对相关工程有重要参考意义.  相似文献   

7.
为了研究块裂反倾巨厚层状岩质边坡破坏机制及稳定性,基于PFC2D平行黏结模型和持续增加重力加速度方法,研究边坡破坏模式、应力-变形及能量耗散演化,并用临界重力加速度量化研究其稳定性。研究结果表明:边坡破坏模式主要有滑移、倾倒和溃屈破坏3类且随岩层倾角增大而逐渐转变;随岩块两相邻边长比l/h增大,边坡越倾向于发生倾倒破坏;滑移和倾倒破坏模式从坡脚向上坡体应力逐步达到峰值并峰后跌落,具有渐进破坏特征。而溃屈破坏模式坡体各部位应力呈"捆绑"型波动性塑性流动状态,具有大面积剧烈整体性破坏特征;随着岩层倾角(45°,60°,75°)增大,边坡临界重力加速度先减小再增大,稳定性在60°时最弱。边坡稳定性随岩块增大而增强,并主要受层间裂隙间距控制。  相似文献   

8.
以黄河上游拟建的茨哈峡水电站坝后泄水边坡为研究对象,通过野外地质调查、室内试验及数值模拟对其变形破坏特征及机制进行探究。研究结果表明:泄水边坡中上部发生卸荷拉裂破坏;坡体中部发生蠕动变形,表现为平硐内岩体的弯曲倾倒;坡体下部为弱风化岩体,有缓倾节理面发育。该边坡变形破坏机制为顺向层状边坡在自身重力作用、河流的下切作用、上覆岩体的崩塌、坡积物沿坡面的下滑力以及降雨作用下,产生向外的弯曲变形,随着外力作用的继续,岩体弯曲变形向深部和下部发展,坡体表层岩体发生倾倒变形破坏。  相似文献   

9.
由于反倾软硬互层边坡集合了软岩和硬岩两种岩性特征,对其变形破坏过程和成因机制研究尚未十分明确.采用不连续体理论,利用离散元软件UDEC,通过室内外试验得到模拟所需参数,建立数值分析模型,研究影响软硬互层边坡倾倒变形的因素和成因机制.分析结果表明,边坡坡脚和岩层倾角在60°~70°范围内发生倾倒变形的可能性大,且边坡坡脚和岩层倾角之和大于120°为发生倾倒变形的一个重要条件;互层岩体层厚和岩体性质决定了倾倒变形的类型;软硬互层边坡的形成过程分为四个阶段:初始变形阶段;软岩弯曲、硬岩折断变形阶段;拉张剪切面贯通阶段;破坏阶段.  相似文献   

10.
层状岩质边坡是川藏铁路沿线区域常见的地质体,边坡的地震稳定性对工程建设具有重要的影响.采用有限差分法软件FLAC3D建立顺层边坡及反倾边坡的数值模型,通过对比分析两种典型层状边坡的动力加速度响应,研究地震作用下层状边坡的动力响应特征及变形机理.研究结果表明:软弱夹层对层状边坡的波传播特征具有影响,使地震波在坡内传播过程中出现局部的放大效应;高程及软弱夹层对层状边坡的动力响应具有放大效应,相同高程条件下坡表的放大效应大于坡内;与反倾边坡相比,顺层边坡的放大效应随高程增加表现出强烈的非线性增加趋势;层状边坡的动力放大效应随地震动幅值的增加而增加,水平地震力作用下层状边坡的动力放大效应大于垂直地震力作用下层状边坡的动力放大效应;软弱夹层对层状边坡的动力变形特征具有控制性作用,最上层软弱夹层为潜在滑移面.  相似文献   

11.
层状反倾岩石边坡的破坏模式以倾倒折断破坏为主,目前在进行边坡设计和稳定性评价时,一般依据各向同性介质理论,采用极限应力法确定近似圆弧滑面,作为边坡稳定性计算和设计参数选择的依据,这种计算方法用于层状反倾岩石边坡显然是不合适的。本文建立叠合悬臂梁计算模型,来对层状反倾边坡进行分析,得出了增大反倾岩层层面之间的粘聚力和内摩擦角,以及增大层状岩体的层厚,均可增大反倾边坡的稳定性的结论,并结合具体的工程案例进行初步计算,给出了初步估算反倾边坡发生倾倒折断破坏的方法,从而为定量的分析层状反倾边坡的破坏机理及影响因素提供了参考依据。  相似文献   

12.
皖南某高速公路四号边坡变形机理及稳定性分析   总被引:2,自引:0,他引:2  
皖南某高速路高边坡地质条件复杂,从坡中部至坡顶处均出现明显的倾倒变形迹象,并在边坡左侧发生过垮塌.通过对该边坡的地层岩性、岩体结构和边坡开挖等因素的分析研究,阐述了其变形机理,揭示了其弯曲-倾倒和滑移复合的变形破坏模式.这一变形机理的产生是由于原始地形较陡和坡体强烈卸荷,在开挖的触发下引起上部陡倾岩体向坡外弯曲变形,沿顺坡向结构面滑移拉裂.采用二维有限元数值模拟,分析了这类边坡在开挖过程中的应力和变形的特征及其变化规律,以验证上述的破坏机理模型.  相似文献   

13.
李家峡层状岩体人工开挖边坡变形破坏模式研究   总被引:2,自引:0,他引:2  
李家峡水电站坝址区层状岩体人工边坡,在开挖过程中多处出现变形坍塌现象.通过对人工边坡坡度、边坡类型、岩体结构与变形破坏类型等关系的分析,总结出了该工程人工边坡三大类六个亚类变形破坏模式:即顺向坡的平面滑动型,横向坡可产生双面滑动和单面旋转的楔体滑动型,逆向坡多属倾倒坍塌、倾倒滑移、倾倒拉裂等倾倒破坏类型,并对楔体滑动型提出了对称楔体、不对称楔体、定位楔体、随机楔体等概念和新认识,这为边坡工程的理论与实践提供了丰富的资料.  相似文献   

14.
《科技导报(北京)》2009,27(22):116-116
土壤中有机氯农药残留的分析技术研究进展,反倾层状岩质边坡倾倒变形破坏机理综述,兽药在畜禽排泄物中的残留与降解研究进展,实时数据流聚类的研究新进展.  相似文献   

15.
库岸岩质高边坡的稳定性对水电站施工期和运行期的安全至关重要。首先,从降雨入渗和库水位变化两方面分析了地下水对岩质高边坡稳定性影响的机理。在此基础上,以茨哈峡水电站4#倾倒体为例,剖析了边坡的工程地质特征,运用离散化的有限元方法分析该边坡在降雨入渗、库水位上升和库水位骤降条件下的变形破坏特征,综合评价其稳定性。研究表明,库水位骤降使得岩体内部产生较大的动水压力,对边坡的稳定性影响很大;4#倾倒体受反倾结构面的影响,在水荷载作用下的变形模式为上部倾倒、下部滑移的组合形式,其失稳模式为牵引式倾倒破坏。该研究对实际工程的建设具有参考价值。  相似文献   

16.
针对茨哈峡水电站坝址区出现的倾倒变形破坏现象,本文通过阐述研究区左岸4#倾倒变形破坏的地质环境和特征,分析倾倒的成因以及形成机制。结合现场勘查研究区岩层倾角变化幅度、层内最大拉张量、岩体卸荷变形、岩体风化程度、岩体波速特征等指标,通过计算岩体完整性系数Kv对倾倒变形进行分类。结果表明:岩体倾倒变形现象主要出现在茨哈峡水电站坝址区左岸岸坡,砂岩板岩以及互层状岩层存在和中陡倾薄层反向斜坡是其发育的根本原因,卸荷和风化作用加速了岩体的倾倒过程,岩层厚度也对倾倒过程有影响。倾倒变形破坏类型包括卸荷拉裂破坏、弯曲倾倒破坏和崩塌破坏。将岩体倾倒程度划分为强烈倾倒区、中等倾倒区、弱倾倒区及微倾倒区,岩体倾倒程度等级划分能够为后期边坡治理开挖,水工建筑物的施工布置提供理论依据。  相似文献   

17.
针对岩质反倾边坡滑动倾倒复合破坏的研究不足,首先建立了边坡滑动-块状倾倒-弯曲倾倒复合破坏的地质模型,具体可分为滑动区、块状倾倒区和弯曲倾倒区;然后根据三个分区岩块的破坏机制,提出了各个分区的力学模型;并基于极限平衡理论和悬臂梁模型,提出了边坡滑动-块状倾倒-弯曲倾倒复合破坏的逐步分析方法;最后通过一个工程实例验证了所提地质模型和分析方法的正确性.研究结果表明:岩质反倾边坡滑动-块状倾倒-弯曲倾倒复合破坏的稳定性由滑动-块状倾倒复合破坏区域控制;块状倾倒区域属于主动破坏区域,滑动区属于被动破坏区域,治理加固时应重点加固块状倾倒破坏区.  相似文献   

18.
了解滑坡的失稳机理和破坏模式是对其进行预防预报的前提。采用物理模型试验方法,以降雨为触发条件,进行多次模型试验,记录前缘反倾式锁固型边坡在不同坡面形态时的变形破坏现象,研究该类边坡的失稳机理及破坏模式。研究结果表明:前缘反倾式锁固型边坡为后缘推移式滑动破坏,该类边坡失稳始于边坡后缘,其破坏模式为开始降雨→雨水从坡面入渗,边坡土体强度降低→后缘土体发生沉降→前缘土体发生垮塌→坡体后缘持续下沉,推动边坡底部土体向前滑动-坡体前缘出现推挤隆升现象-边坡整体失稳破坏;前缘反倾式锁固型边坡发生整体失稳的根本原因是边坡前缘土体强度降低及垮塌,致其无法提供足够的抗滑力,边坡发生整体失稳。研究成果对此类滑坡的预防预报具有一定的指导意义。  相似文献   

19.
某一典型硅质岩的坡体由于工程建设需要进行开挖,极具工程研究价值。通过现场调研,该山体层状结构岩体被划分为巨厚状结构、块状结构、层状节及散体结构,其中层状岩体被划分为缓倾角层状岩体结构和陡倾角层状岩体两类。采用离散元数值模拟方法,对其中的典型层状岩体稳定性展开数值模拟,结果显示,边坡整体上稳定;开挖过程,边坡岩体变形属于渐进变形。开挖处上侧,重力与松弛作用共同驱动围岩变形;开挖处下侧,变形由松弛作用驱动。此外,层面是控制开挖变形的重要因素,施工过程应注意防治层面间的滑移破坏。  相似文献   

20.
针对顺层岩质边坡岩层结构面倾角θ和边坡角α两个参数,采用离散单元法研究了不同工况下总计270个边坡模型的变形破坏特征,统计得到不同变形破坏模式对应的岩层结构面倾角θ与边坡角α的范围,并基于强度折减法研究了两个参数与边坡稳定性的关系,揭示了顺层岩质边坡变形破坏机制及稳定性特征. 研究结果表明:依据边坡变形破坏特征,提出了四种顺层岩质边坡变形破坏模式,即坡脚沿岩层结构面的滑移-剪切破坏,坡顶沿岩层结构面的滑动-剪切破坏,岩层下缘弯曲-剪切破坏,以及岩层上缘翻折-拉裂破坏. 在此基础上,分析并归纳了这四种模式的产状、变形特征以及可能的破坏模式等一般规律. 边坡安全系数fs随结构面倾角θ的增大先减小后增大,在减小过程中达到最小值后迅速上升,然后变缓回落.边坡安全系数fs随结构面倾角θ变化过程中,当θ约等于α-7. 3°时,fs取得最小值,此时对应的边坡稳定性最差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号