首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2   总被引:15,自引:0,他引:15  
Wu L  Bauer CS  Zhen XG  Xie C  Yang J 《Nature》2002,419(6910):947-952
Voltage-gated calcium channels (VGCCs) conduct calcium into cells after membrane depolarization and are vital for diverse biological events. They are regulated by various signalling pathways, which has profound functional consequences. The activity of VGCCs decreases with time in whole-cell and inside-out patch-clamp recordings. This rundown reflects persistent intrinsic modulation of VGCCs in intact cells. Although several mechanisms have been reported to contribute to rundown of L-type channels, the mechanism of rundown of other types of VGCC is poorly understood. Here we show that phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), an essential regulator of ion channels and transporters, is crucial for maintaining the activity of P/Q- and N-type channels. Activation of membrane receptors that stimulate hydrolysis of PtdIns(4,5)P2 causes channel inhibition in oocytes and neurons. PtdIns(4,5)P2 also inhibits P/Q-type channels by altering the voltage dependence of channel activation and making the channels more difficult to open. This inhibition is alleviated by phosphorylation by protein kinase A. The dual actions of PtdIns(4,5)P2 and the crosstalk between PtdIns(4,5)P2 and protein kinase A set up a dynamic mechanism through which the activity of VGCCs can be finely tuned by various neurotransmitters, hormones and trophic factors.  相似文献   

2.
Cloning by functional expression of a member of the glutamate receptor family   总被引:52,自引:0,他引:52  
We have isolated a complementary DNA clone by screening a rat brain cDNA library for expression of kainate-gated ion channels in Xenopus oocytes. The cDNA encodes a single protein of relative molecular mass (Mr) 99,800 which on expression in oocytes forms a functional ion channel possessing the electrophysiological and pharmacological properties of the kainate subtype of the glutamate receptor family in the mammalian central nervous system.  相似文献   

3.
Selected actions of neurotransmitters and hormones on ion channels in nerve and muscle cells are now thought to be mediated by cyclic AMP-dependent protein phosphorylation. Although the cyclic AMP-dependent protein kinase (cAMP-PK) affects the cellular properties of several neurones, its mode of action at the single-channel level has not been characterized. In addition, little is known about the identity or subcellular localization of the phosphoproteins that control channel activity and, in particular, whether the critical substrate proteins are cytoplasmic or membrane-associated. In Aplysia sensory neurones, serotonin produces a slow modulatory synaptic potential mediated by cAMP-PK that contributes to presynaptic facilitation and behavioural sensitization. Previously, we have found that serotonin acts on cell-attached membrane patches to produce prolonged all-or-none closures of a specific class of K+ channels (S channels) whose gating is weakly dependent on voltage and independent of intracellular calcium. We demonstrate here that in cell-free membrane patches from Aplysia sensory neurones, the purified catalytic subunit of cAMP-PK produces all-or-none closures of the S channel, simulating most (but not all) aspects of the action of serotonin on cell-attached patches. This result suggests that protein kinase acts on the internal surface of the membrane to phosphorylate either the channel itself or a membrane-associated protein that regulates channel activity.  相似文献   

4.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma membrane Cl- channel regulated by cyclic AMP-dependent phosphorylation and by intracellular ATP. Mutations in CFTR cause cystic fibrosis partly through loss of cAMP-regulated Cl- permeability from the plasma membrane of affected epithelia. The most common mutation in cystic fibrosis is deletion of phenylalanine at residue 508 (CFTR delta F508) (ref. 10). Studies on the biosynthesis and localization of CFTR delta F508 indicate that the mutant protein is not processed correctly and, as a result, is not delivered to the plasma membrane. These conclusions are consistent with earlier functional studies which failed to detect cAMP-stimulated Cl- channels in cells expressing CFTR delta F508 (refs 16, 17). Chloride channel activity was detected, however, when CFTR delta F508 was expressed in Xenopus oocytes, Vero cells and Sf9 insect cells. Because oocytes and Sf9 cells are typically maintained at lower temperatures than mammalian cells, and because processing of nascent proteins can be sensitive to temperature, we tested the effect of temperature on the processing of CFTR delta F508. Here we show that the processing of CFTR delta F508 reverts towards that of wild-type as the incubation temperature is reduced. When the processing defect is corrected, cAMP-regulated Cl- channels appear in the plasma membrane. These results reconcile previous contradictory observations and suggest that the mutant most commonly associated with cystic fibrosis is temperature-sensitive.  相似文献   

5.
Ligand-gated ion channels (LGICs) mediate excitatory and inhibitory transmission in the nervous system. Among them, the pentameric or 'Cys-loop' receptors (pLGICs) compose a family that until recently was found in only eukaryotes. Yet a recent genome search identified putative homologues of these proteins in several bacterial species. Here we report the cloning, expression and functional identification of one of these putative homologues from the cyanobacterium Gloeobacter violaceus. It was expressed as a homo-oligomer in HEK 293 cells and Xenopus oocytes, generating a transmembrane cationic channel that is opened by extracellular protons and shows slow kinetics of activation, no desensitization and a single channel conductance of 8 pS. Electron microscopy and cross-linking experiments of the protein fused to the maltose-binding protein and expressed in Escherichia coli are consistent with a homo-pentameric organization. Sequence comparison shows that it possesses a compact structure, with the absence of the amino-terminal helix, the canonical disulphide bridge and the large cytoplasmic domain found in eukaryotic pLGICs. Therefore it embodies a minimal structure required for signal transduction. These data establish the prokaryotic origin of the family. Because Gloeobacter violaceus carries out photosynthesis and proton transport at the cytoplasmic membrane, this new proton-gated ion channel might contribute to adaptation to pH change.  相似文献   

6.
Penna A  Demuro A  Yeromin AV  Zhang SL  Safrina O  Parker I  Cahalan MD 《Nature》2008,456(7218):116-120
Ca(2+)-release-activated Ca(2+) (CRAC) channels underlie sustained Ca(2+) signalling in lymphocytes and numerous other cells after Ca(2+) liberation from the endoplasmic reticulum (ER). RNA interference screening approaches identified two proteins, Stim and Orai, that together form the molecular basis for CRAC channel activity. Stim senses depletion of the ER Ca(2+) store and physically relays this information by translocating from the ER to junctions adjacent to the plasma membrane, and Orai embodies the pore of the plasma membrane calcium channel. A close interaction between Stim and Orai, identified by co-immunoprecipitation and by F?rster resonance energy transfer, is involved in the opening of the Ca(2+) channel formed by Orai subunits. Most ion channels are multimers of pore-forming subunits surrounding a central channel, which are preassembled in the ER and transported in their final stoichiometry to the plasma membrane. Here we show, by biochemical analysis after cross-linking in cell lysates and intact cells and by using non-denaturing gel electrophoresis without cross-linking, that Orai is predominantly a dimer in the plasma membrane under resting conditions. Moreover, single-molecule imaging of green fluorescent protein (GFP)-tagged Orai expressed in Xenopus oocytes showed predominantly two-step photobleaching, again consistent with a dimeric basal state. In contrast, co-expression of GFP-tagged Orai with the carboxy terminus of Stim as a cytosolic protein to activate the Orai channel without inducing Ca(2+) store depletion or clustering of Orai into punctae yielded mostly four-step photobleaching, consistent with a tetrameric stoichiometry of the active Orai channel. Interaction with the C terminus of Stim thus induces Orai dimers to dimerize, forming tetramers that constitute the Ca(2+)-selective pore. This represents a new mechanism in which assembly and activation of the functional ion channel are mediated by the same triggering molecule.  相似文献   

7.
Khakh BS  North RA 《Nature》2006,442(7102):527-532
P2X receptors are membrane ion channels activated by the binding of extracellular adenosine triphosphate (ATP). For years their functional significance was consigned to distant regions of the autonomic nervous system, but recent work indicates several further key roles, such as afferent signalling, chronic pain, and in autocrine loops of endothelial and epithelial cells. P2X receptors have a molecular architecture distinct from other ion channel protein families, and have several unique functional properties.  相似文献   

8.
Heteromultimeric channels formed by rat brain potassium-channel proteins   总被引:27,自引:0,他引:27  
An important step towards understanding the molecular basis of the functional diversity of voltage-gated K+ channels in the mammalian brain has been the discovery of a family of genes encoding rat brain K+ channel-forming (RCK) proteins. All species of these RCK proteins form homomultimeric voltage-gated K+ channels with distinct functional characteristics in Xenopus laevis oocytes following injection of the respective cRNAs. RCK-specific mRNAs are coexpressed in several regions of the brain, suggesting that RCK proteins also assemble into heteromultimeric K+ channels. In addition expression experiments with fractionated poly(A)+ mRNA have suggested that heteromultimeric K+ channels may occur in mammalian brain. We report here that heteromultimeric K+ channels composed of two different RCK proteins (RCK1 and RCK4) assemble after cotransfection of HeLa cells with the corresponding cDNAs and after coinjection of the corresponding cRNAs into Xenopus oocytes. The heteromultimeric RCK1, 4 channel mediates a transient potassium outward current, similar to the RCK4 channel but inactivates more slowly, has a larger conductance and is more sensitive to block by dendrotoxin and tetraethylammonium chloride.  相似文献   

9.
N Buttner  S A Siegelbaum  A Volterra 《Nature》1989,342(6249):553-555
Lipoxygenase metabolites of arachidonic acid have recently been shown to modulate the activity of ion channels in nerve and muscle cells. The mechanism of action of these metabolites is, however, unknown. In sensory neurons of Aplysia, the S-K- channel is under the dual modulatory control of 5-hydroxytryptamine (5-HT), which decreases the number of active S channels through cyclic AMP-dependent phosphorylation, and the neuropeptide FMRFamide, which increases the probability of S-channel opening through the 12-lipoxygenase metabolite 12-hydroperoxyeicosatetraenoic acid (12-HPETE). Here we report that the increase in the probability of S-channel opening with FMRFamide is mimicked by application of 12-HPETE to cell-free membrane patches that lack ATP and GTP. Thus, 12-HPETE can act directly to modulate S-channel activity, independently of protein phosphorylation or dephosphorylation, G-protein activation or cyclic nucleotides.  相似文献   

10.
C B Gundersen  R Miledi  I Parker 《Nature》1984,308(5958):421-424
Sodium channels and receptors to serotonin and kainate were 'transplanted' from human brain into frog oocytes, by isolating messenger RNA from a fetal brain, and injecting it into Xenopus laevis oocytes. The mRNA was translated by the oocyte and induced the appearance of functional receptors and channels in its membrane. This approach renders drug- and voltage-operated channels of the human brain more amenable to detailed study.  相似文献   

11.
New mammalian chloride channel identified by expression cloning.   总被引:30,自引:0,他引:30  
M Paulmichl  Y Li  K Wickman  M Ackerman  E Peralta  D Clapham 《Nature》1992,356(6366):238-241
Ion channels selectively permeable to chloride ions regulate cell functions as diverse as excitability and control of cell volume. Using expression cloning techniques, a complementary DNA from an epithelial cell line has been isolated, sequenced and its putative structure examined by site-directed mutagenesis. This cDNA, encoding a 235-amino-acid protein, gave rise to a chloride-selective outward current when expressed in Xenopus oocytes. The expressed, outwardly rectifying chloride current was calcium-insensitive and was blocked by nucleotides applied to the cell surface. Mutation of a putative nucleotide-binding site resulted in loss of nucleotide block but incurred dependence on extracellular calcium concentration. The unusual sequence of this putative channel protein suggests a new class of ion channels not related to other previously cloned chloride channels.  相似文献   

12.
The combination of complementary DNA expression and single-channel current analysis provides a powerful tool for studying the structure-function relationship of the nicotinic acetylcholine receptor (AChR) (refs 1-5). We have previously shown that AChR channels consisting of subunits from different species, expressed in the surface membrane of Xenopus oocytes, can be used to relate functional properties to individual subunits. Here we report that, in extracellular solution of low divalent cation concentration, the bovine AChR channel has a smaller conductance than the Torpedo AChR channel. Replacement of the delta-subunit of the Torpedo AChR by the bovine delta-subunit makes the channel conductance similar to that of the bovine AChR channel. To locate the region in the delta-subunit responsible for this difference, we have constructed chimaeric delta-subunit cDNAs with different combinations of the Torpedo and bovine counterparts. The conductances of AChR channels containing chimaeric delta-subunits suggest that a region comprising the putative transmembrane segment M2 and the adjacent bend portion between segments M2 and M3 is involved in determining the rate of ion transport through the open channel.  相似文献   

13.
From molecule to malady   总被引:1,自引:0,他引:1  
Ashcroft FM 《Nature》2006,440(7083):440-447
Ion channels are membrane proteins, found in virtually all cells, that are of crucial physiological importance. In the past decade, an explosion in the number of crystal structures of ion channels has led to a marked increase in our understanding of how ion channels open and close, and select between permeant ions. There has been a parallel advance in research on channelopathies (diseases resulting from impaired channel function), and mutations in over 60 ion-channel genes are now known to cause human disease. Characterization of their functional consequences has afforded unprecedented and unexpected insights into ion-channel mechanisms and physiological roles.  相似文献   

14.
Ramsey IS  Moran MM  Chong JA  Clapham DE 《Nature》2006,440(7088):1213-1216
Voltage changes across the cell membrane control the gating of many cation-selective ion channels. Conserved from bacteria to humans, the voltage-gated-ligand superfamily of ion channels are encoded as polypeptide chains of six transmembrane-spanning segments (S1-S6). S1-S4 functions as a self-contained voltage-sensing domain (VSD), in essence a positively charged lever that moves in response to voltage changes. The VSD 'ligand' transmits force via a linker to the S5-S6 pore domain 'receptor', thereby opening or closing the channel. The ascidian VSD protein Ci-VSP gates a phosphatase activity rather than a channel pore, indicating that VSDs function independently of ion channels. Here we describe a mammalian VSD protein (H(V)1) that lacks a discernible pore domain but is sufficient for expression of a voltage-sensitive proton-selective ion channel activity. H(v)1 currents are activated at depolarizing voltages, sensitive to the transmembrane pH gradient, H+-selective, and Zn2+-sensitive. Mutagenesis of H(v)1 identified three arginine residues in S4 that regulate channel gating and two histidine residues that are required for extracellular inhibition of H(v)1 by Zn2+. H(v)1 is expressed in immune tissues and manifests the characteristic properties of native proton conductances (G(vH+)). In phagocytic leukocytes, G(vH+) are required to support the oxidative burst that underlies microbial killing by the innate immune system. The data presented here identify H(v)1 as a long-sought voltage-gated H+ channel and establish H(v)1 as the founding member of a family of mammalian VSD proteins.  相似文献   

15.
Goodman MB  Ernstrom GG  Chelur DS  O'Hagan R  Yao CA  Chalfie M 《Nature》2002,415(6875):1039-1042
Touch sensitivity in animals relies on nerve endings in the skin that convert mechanical force into electrical signals. In the nematode Caenorhabditis elegans, gentle touch to the body wall is sensed by six mechanosensory neurons that express two amiloride-sensitive Na+ channel proteins (DEG/ENaC). These proteins, MEC-4 and MEC-10, are required for touch sensation and can mutate to cause neuronal degeneration. Here we show that these mutant or 'd' forms of MEC-4 and MEC-10 produce a constitutively active, amiloride-sensitive ionic current when co-expressed in Xenopus oocytes, but not on their own. MEC-2, a stomatin-related protein needed for touch sensitivity, increased the activity of mutant channels about 40-fold and allowed currents to be detected with wild-type MEC-4 and MEC-10. Whereas neither the central, stomatin-like domain of MEC-2 nor human stomatin retained the activity of full-length MEC-2, both produced amiloride-sensitive currents with MEC-4d. Our findings indicate that MEC-2 regulates MEC-4/MEC-10 ion channels and raise the possibility that similar ion channels may be formed by stomatin-like proteins and DEG/ENaC proteins that are co-expressed in both vertebrates and invertebrates. Some of these channels may mediate mechanosensory responses.  相似文献   

16.
Cloning of a probable potassium channel gene from mouse brain   总被引:23,自引:0,他引:23  
B L Tempel  Y N Jan  L Y Jan 《Nature》1988,332(6167):837-839
Potassium channels comprise a diverse class of ion channels important for neuronal excitability and plasticity. The recent cloning of the Shaker locus from Drosophila melanogaster has provided a starting point for molecular studies of potassium channels. Predicted Shaker proteins appear to be integral membrane proteins and have a sequence similar to the sequence of the S4 segment of the vertebrate sodium channel, where the S4 segment has been proposed to be the voltage sensor. Expression studies in frog oocytes confirm that Shaker encodes a component of a potassium channel (the A channel) that conducts a fast transient potassium current. Here we report the isolation of complementary DNA clones from the mouse brain, the nucleotide sequences of which predict a protein remarkably similar to the Shaker protein. The strong conservation of the predicted protein sequence in flies and mammals suggests that these mouse clones encode a potassium channel component and that the conserved amino acids may be essential to some aspect of potassium channel function.  相似文献   

17.
Fountain SJ  Parkinson K  Young MT  Cao L  Thompson CR  North RA 《Nature》2007,448(7150):200-203
P2X receptors are membrane ion channels gated by extracellular ATP that are found widely in vertebrates, but not previously in microbes. Here we identify a weakly related gene in the genome of the social amoeba Dictyostelium discoideum, and show, with the use of heterologous expression in human embryonic kidney cells, that it encodes a membrane ion channel activated by ATP (30-100 muM). Site-directed mutagenesis revealed essential conservation of structure-function relations with P2X receptors of higher organisms. The receptor was insensitive to the usual P2X antagonists but was blocked by nanomolar concentrations of Cu2+ ions. In D. discoideum, the receptor was found on intracellular membranes, with prominent localization to an osmoregulatory organelle, the contractile vacuole. Targeted disruption of the gene in D. discoideum resulted in cells that were unable to regulate cell volume in hypotonic conditions. Cell swelling in these mutant cells was accompanied by a marked inhibition of contractile vacuole emptying. These findings demonstrate a new functional role for P2X receptors on intracellular organelles, in this case in osmoregulation.  相似文献   

18.
Ion conduction pore is conserved among potassium channels.   总被引:15,自引:0,他引:15  
Z Lu  A M Klem  Y Ramu 《Nature》2001,413(6858):809-813
Potassium channels, a group of specialized membrane proteins, enable K+ ions to flow selectively across cell membranes. Transmembrane K+ currents underlie electrical signalling in neurons and other excitable cells. The atomic structure of a bacterial K+ channel pore has been solved by means of X-ray crystallography. To the extent that the prokaryotic pore is representative of other K+ channels, this landmark achievement has profound implications for our general understanding of K+ channels. But serious doubts have been raised concerning whether the prokaryotic K+ channel pore does actually represent those of eukaryotes. Here we have addressed this fundamental issue by substituting the prokaryotic pore into eukaryotic voltage-gated and inward-rectifier K+ channels. The resulting chimaeras retain the respective functional hallmarks of the eukaryotic channels, which indicates that the ion conduction pore is indeed conserved among K+ channels.  相似文献   

19.
5-HT3 receptors are membrane ion channels   总被引:20,自引:0,他引:20  
V Derkach  A Surprenant  R A North 《Nature》1989,339(6227):706-709
The neurohormone 5-hydroxytryptamine (5HT or serotonin) exerts its effects by binding to several distinct receptors. One of these is the M-receptor of Gaddum and Picarelli, now called the 5-HT3 receptor, through which 5-HT acts to excite enteric neurons. Ligand-binding and functional studies have shown that the 5-HT3 receptor is widely distributed in peripheral and central nervous tissue and evidence suggests that the receptor might incorporate an ion channel permeable to cations. We now report the first recordings of currents through single ion channels activated by 5-HT3 receptors, in excised (outside-out) membrane patches from neurons of the guinea pig submucous plexus. Whereas application of acetylcholine activated predominantly a 40-pS channel, 5-HT caused unitary currents apparently through two channels of conductances of 15 and 9 pS, which were reversibly blocked by antagonists of the 5-HT3 receptor. Receptors for amine neurotransmitters, including 5-HT1 and 5-HT2, have previously been thought to transduce their effects through GTP-binding proteins: the direct demonstration that 5-HT3 receptors are ligand-gated ion channels implies a role for 5-HT, and perhaps other amines, as a 'fast' synaptic transmitter.  相似文献   

20.
The glutamate receptor (GluR) channel plays a key part in brain function. Among GluR channel subtypes, the NMDA (N-methyl-D-aspartate) receptor channel which is highly permeable to Ca2+ is essential for the synaptic plasticity underlying memory, learning and development. Furthermore, abnormal activation of the NMDA receptor channel may trigger the neuronal cell death observed in various brain disorders. A complementary DNA encoding a subunit of the rodent NMDA receptor channel (NMDAR1 or zeta 1) has been cloned and its functional properties investigated. Here we report the identification and primary structure of a novel mouse NMDA receptor channel subunit, designated as epsilon 1, after cloning and sequencing the cDNA. The epsilon 1 subunit shows 11-18% amino-acid sequence identity with rodent GluR channel subunits that have been characterized so far and has structural features common to neurotransmitter-gated ion channels. Expression from cloned cDNAs of the epsilon 1 subunit together with the zeta 1 subunit in Xenopus oocytes yields functional GluR channels with high activity and characteristics of the NMDA receptor channel. Furthermore, the heteromeric NMDA receptor channel can be activated by glycine alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号