首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为研究地铁隧道施工引起地表沉降问题,以大连地区地铁隧道开挖大量地表沉降实测数据为基础,运用数学方法,在Peck公式中引入两个修正系数:α(地表最大沉降修正系数)及β(沉降槽宽度修正系数),使之适用于大连地质条件下研究区间工况.通过大量实测数据分析,结果表明:当沉降槽宽度修正系数值β和地表最大沉降修正系数值α分别位于0.5~1.0、0.5~0.9之间时,得到的Peck曲线与原始Peck公式预测曲线相比,更加吻合地表沉降实测数据,预测效果更优.  相似文献   

2.
Peck公式在双线盾构隧道施工地层变形中的适应性分析   总被引:3,自引:0,他引:3  
收集了杭州地铁1号线盾构隧道、武汉长江盾构隧道引起的地层变形实测数据,对双线盾构隧道施工引起的地表变形规律进行了研究.采用Peck公式对14组数据进行了拟合分析,并给出了杭州和武汉地区双线盾构隧道施工地层变形预测的相关参数.研究结果表明,经典的Peck公式在分析和预测单线及双线盾构隧道施工地表变形中仍然适用,修正后的Peck公式是经典公式的有效补充,对预测双线盾构隧道引起的地层沉降具有重要意义.  相似文献   

3.
采用盾构法进行隧道施工,难免会引起地层移动而导致不同程度的沉降,而采用Peck公式进行沉降预测时,首先要利用实测数据对该公式进行验证,并给出适合该地域的计算参数。文章利用合肥轨道交通盾构施工中的地表监测数据对Peck公式进行验证,同时计算出沉降槽宽度参数和地层损失率,为该公式在合肥盾构施工过程中预测地表沉降值提供了依据。  相似文献   

4.
由于双线隧道存在复杂的耦合作用,盾构施工引起的地表沉降规律极为复杂,所以准确计算地表沉降较为困难。本文基于Peck公式和Chapman修正参数,考虑先行隧道的施工影响和双线隧道的相对位置关系,通过参数的经验量化,建立了双线隧道地表沉降的计算公式。此外,依托苏州市轨道交通S1号线工程,讨论公式在不同土层中的适用性及参数取值范围,在此基础上采用PLAXIS 3D有限元软件对双线隧道盾构施工进行了数值模拟。结果表明:在软土地层中进行盾构施工,应用本文修正公式计算得到的地表沉降值与数值模拟和现场实测结果均较为吻合。修正公式考虑了双线隧道的位置信息,可以定量反映隧道埋深和双线隧道间距对地表沉降的影响。该研究可为软土地区双线隧道盾构施工沉降计算提供参考。  相似文献   

5.
依托南宁地铁2号线土压平衡盾构施工的双线隧道,通过对施工现场地表沉降的监测分析,揭示了双线隧道左、右线先后开挖过程中的地表横向沉降规律与地表沉降变形的历时变化规律。在此基础上,采用Peck沉降槽理论,考虑双线隧道盾构施工的相互影响,引入左线隧道施工对右线隧道地表沉降影响系数和右线隧道施工对左线隧道地表沉降影响系数,并提出这两个影响系数的确定方法,对相互影响范围内的双线隧道地表沉降公式进行修正,从而提出了一种采用分段函数形式表达的地铁双线隧道盾构施工引起地表沉降的预测模型,并验证了该预测模型的可靠性。  相似文献   

6.
盾构掘进法开挖隧道对地表沉降影响的预估   总被引:2,自引:0,他引:2  
盾构掘进法开挖隧道引起的地表沉降对地面建筑物影响在地下工程施工中越来越受到人们的关注,而这个问题的关键是要对地表沉降进行预估.总结了国内外对盾构掘进法开挖隧道引起地表沉降进行预估的常用计算方法,如Peck横向沉降槽经验公式及修正公式、数值分析法、模型试验法和智能决策理论方法.最后就目前国内外盾构掘进法施工隧道对地表沉降影响研究中存在的问题进行了探讨,并提出了一些实质性的建议.  相似文献   

7.
为解决盾构隧道掘进施工的地层扰动效应及其周边环境影响问题,依托福州地铁5号线农洪区间隧道工程,考虑刀盘顶推力、刀盘摩阻力、盾壳摩擦力和同步注浆压力,对其掘进施工过程展开精细化数值模拟,并与实测地表沉降结果进行对比分析.进一步地,引入宽度修正系数α,提出沿江不对称地形条件下的修正Peck公式;同时开展16种不同地形条件下的数值模拟,探讨岸坡距离与拱顶埋深对地表沉降特性的影响.结果表明:最大地表沉降Smax和宽度修正系数α,均随着岸坡距离和拱顶埋深的增大,呈近似线性的负相关趋势.上述研究可为类似条件下的盾构隧道施工提供借鉴.  相似文献   

8.
针对peck经验公式预测隧道开挖引起的地表沉降受地质环境、开挖方式等影响的问题,揭示隧道开挖引起地表沉降的一般规律.基于兰州砂卵石地层某地铁盾构区间,取30个典型断面地表沉降的监测数据,利用线性回归方法,引入地表最大沉降量的修正系数α和沉降槽宽度修正系数β,修正优化peck公式.研究结果表明:在兰州砂卵石的地层条件下,当α∈[0.5139,0.9364],β∈[0.5987,0.7609]时,优化后的peck曲线与监测数据较为吻合.研究结论为城市相似地层下地铁建设提供参考和依据.  相似文献   

9.
基于哈尔滨地铁1号线同江路站-哈尔滨南站区间地表沉降的实测数据及地层信息,分析地表沉降槽宽度和地层损失率的变化规律,并在此基础上对Peck公式回归分析,得出适用于哈尔滨粉质黏土地层隧道的地表沉降修正系数。结果表明:粉质黏土地层沉降槽宽度与隧道埋深之间可用线性关系表示,此时沉降槽宽度系数的取值范围为0. 42~0. 6;当地层损失率在0. 46%~0. 59%之间时,能够更好地预测土体的体积损失量;当地表最大沉降修正系数的范围为0. 4~0. 7、沉降槽宽度修正系数的范围为0. 9~1. 3时,通过相似地质情况的哈尔滨地铁3号线旭升街站-松江生态园站区间实测数据进行验证,发现修正后的Peck公式能够更好地预测地表沉降。  相似文献   

10.
哈尔滨粉质粘土地层隧道沉降规律   总被引:1,自引:1,他引:0  
基于哈尔滨地铁1号线同江路站-哈尔滨南站区间地表沉降的实测数据及地层信息,分析地表沉降槽宽度和地层损失率的变化规律,并在此基础上对Peck公式回归分析,得出适用于哈尔滨粉质黏土地层隧道的地表沉降修正系数。结果表明:粉质黏土地层沉降槽宽度与隧道埋深之间可用线性关系表示,此时沉降槽宽度系数的取值范围为0. 42~0. 6;当地层损失率在0. 46%~0. 59%之间时,能够更好地预测土体的体积损失量;当地表最大沉降修正系数的范围为0. 4~0. 7、沉降槽宽度修正系数的范围为0. 9~1. 3时,通过相似地质情况的哈尔滨地铁3号线旭升街站-松江生态园站区间实测数据进行验证,发现修正后的Peck公式能够更好地预测地表沉降。  相似文献   

11.
城市地铁盾构隧道掘进会造成邻近建筑物发生结构变形及沉降。由于不同建筑物所处位置各异,盾构隧道穿越土体的上覆土厚度、岩层组合、地下水埋深等情况不一,因此,建筑物沉降规律存在较大的差异。文中基于南宁市水文地质条件、岩层组合模型及工程结构特征等因素对地铁盾构施工区间线路进行地质分区。根据盾构隧道施工引起的建筑物沉降曲线基本符合高斯分布的特点,结合建筑物的基础埋深、刚度、与隧道的相对位置等因素,对地表沉降Peck公式的地层参数进行修正,得到不同地质分区建筑物沉降预测公式。以南宁地铁一号线某区间为实例,将建筑物沉降预测公式计算值与实际监测值进行对比,结果表明两者拟合相关系数为82%,说明公式具有良好的适用性,可为南宁市地铁后续线路邻近建筑物沉降预测提供参考。  相似文献   

12.
上海地区地铁隧道盾构施工地面沉降分析   总被引:33,自引:0,他引:33  
根据上海地铁明珠线浦东南路站-南浦大桥站区间隧道盾构推进引起的地面沉降的实际观测数据,分析常用的地面沉降槽计算经验公式对于上海地区软土中修建的地铁盾构隧道的适应性,提出了地铁盾构隧道横断面上地表沉降预测公式参数确定方法以及纵断面上地表沉降分布修正计算公式及其参数确定方法。应用结果表明,该计算公式能较好地预测盾构施工引起的地面沉降分布。  相似文献   

13.
在盾构隧道下穿导致的地表沉降计算中,通常需利用Peck公式理论计算盾构横断面的二维沉降.当盾构以斜交下穿时,盾构横断面不再平行于上部线路沿线方向,其沿线沉降的形式不符合正态分布,因此需要将Peck法推广到平面上任意一点的沉降计算中.综合考虑盾构坡角及隆起效应等影响因素,引入角度系数对Peck公式进行修正,使之可直接计算盾构斜交条件下地表平面上任一点的沉降,进而直接计算上部线路沿线沉降.通过有限元数值分析法进行验证,并在此基础上利用动力学仿真分析研究不同斜交角度所产生的不同沉降形式对脱轨系数及减载率的影响.  相似文献   

14.
基于乌鲁木齐砂卵石地层地铁隧道现场监测数据,采用回归分析方法对典型断面地表沉降进行分析,得到适用于砂卵石地层的Peck公式,并进行了现场数据验证.研究成果表明得到的peck公式能够有效预测砂卵石地层盾构施工地表沉降,具有工程指导意义.  相似文献   

15.
西安黄土地层盾构施工的Peck公式修正   总被引:1,自引:0,他引:1  
以西安黄土地区某区间段地铁隧道盾构施工实测数据为基础,通过peck公式的两个重要参数,即沉降槽宽度系数K,地层土体损失率η,对Peck公式进行修正,使其能适用于黄土地区,并为今后黄土地区地铁的盾构施工提供参考依据。研究表明,修正后的沉降槽宽度系数为K=0.42~0.445,地层损失率应根据不同的地层情况和施工参数进行确定,一般情况下取η=0.82%~1.65%是合理的。  相似文献   

16.
为研究浅埋大直径土压平衡盾构施工穿越砂卵石地层造成的地表沉降规律,以北京新机场线9m直径土压平衡盾构隧道为背景,对10m、12m、13m、15m四种覆土厚度下的地表最大沉降、沉降槽宽度、地层损失率进行了对比分析,并用Peck公式进行拟合。分析结果表明:相同施工参数下,隧道上方地表最大沉降和地层损失率随覆土厚度增加而减小且成拱覆土厚度附近存在变化速率的突然改变;深埋隧道测点沉降稳定时间较短,约为2天,浅埋隧道时间较长,约为4天;实测沉降槽宽度及沉降槽拟合曲线的宽度系数与隧道覆土厚度相关性不明显,实测沉降槽宽度约为隧道中线两侧1.5D范围(D为开挖直径);实测地层损失率与通过Peck公式反算的地层损失率都随隧道覆土厚度增大而减小。  相似文献   

17.
目的研究盾构法隧道曲线段施工过程中产生的不均匀地表沉降,提高对隧道曲线段地表沉降的预测及计算能力.方法以马来西亚吉隆坡某地铁隧道区间盾构施工为案例背景,通过现场试验、拟合计算及二维数值计算等方法,研究曲线隧道地表沉降计算,分析地表沉降、千斤顶推力等因素之间的关系.结果在经典的隧道施工地表沉降经验计算公式的基础上提出了修正公式,该修正公式更适合于预测计算曲线盾构隧道施工的地表沉降,最大误差值在4%以内.同时给出了地表不均匀沉降量与盾构不均衡推力之间的关系式.结论笔者提出的曲线盾构隧道地表沉降计算公式优于经典的地表沉降经验计算公式,可更准确的描述曲线盾构隧道施工过程中地表沉降槽的形态.  相似文献   

18.
以北京市轨道交通6号线某区间盾构隧道工程实例为背景,针对双线盾构掘进先后通过临近高层建筑物的特殊情况,首先通过FLAC3D软件对该工程进行数值模拟,分析了先后盾构掘进两条平行隧道时地表最大沉降值的位置,以及盾构掘进与临近建筑物相互作用对地表沉降的影响;其次,对盾构掘进先后穿过高层建筑物的实测数据进行了分析,获得了双线盾构顺序穿越临近高层建筑物过程中地表沉降的变化规律;最后,分析了盾构施工对临近高层建筑物的影响.结果表明:在盾构面前方20 m作用的范围内,地表略微隆起,而盾构通过40 m后地表沉降基本稳定;后行隧道引起的地表沉降大于先行隧道引起的地表沉降;临近高层建筑物在隧道沉降槽影响范围内时,盾构施工对建筑物影响较大,而与双线隧道的先后施工顺序关系不大,数值计算和实测结果相符,对类似工程有一定的借鉴和指导意义.  相似文献   

19.
为研究不同地质条件下盾构法施工引起的地表沉降影响范围,对南京地铁四号线龙江站—云南路站区间盾构施工期间现场有效监测点的实测数据进行Peck公式拟合,通过分析典型沉降槽曲线特征,并统计拟合所得的大量沉降槽宽度系数及其控制参数,获得了不同地貌单元的沉降槽形状特征及沉降槽宽度参数经验值,对不同地质条件下的沉降影响范围作出了预测。研究结果表明:长江漫滩地貌单元沉降槽宽度平均值为12 m,计算沉降槽宽度时沉降槽宽度参数K值可取0.381;秦淮河古河道地貌单元沉降槽宽度平均值为11.3 m,K值可取0.312 2;长江一级阶地地貌单元沉降槽宽度为9.96 m左右,K值可取0.303 2。  相似文献   

20.
分析了盾构隧道地表沉降的构成及其机理,指出影响地表沉降的诸多因素都是不确定的,具有随机性.因此,基于著名的Peck公式,推导了地表最大沉降的平均值及标准差,并利用中心点法计算了地表沉降的可靠指标和失效概率,最后以实例说明.所提出方法为盾构施工地表沉降的可靠性分析提供了一种新的途经.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号