首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J E Sims  A Tunnacliffe  W J Smith  T H Rabbitts 《Nature》1984,312(5994):541-545
Immune systems of vertebrates function via two types of effector cells, B and T cells, which are capable of antigen-specific recognition. The immunoglobulins, which serve as antigen receptors on B cells, have been well characterized with respect to gene structure, unlike the T-cell receptors. Recently, cDNA clones thought to correspond to the beta-chain locus of the human and mouse T-cell receptor have been described. The presumptive beta-chain clones detect gene rearrangement specifically in T-cell DNA and show homology with immunoglobulin light chains. The similarity of the T-cell beta-chain gene system to the immunoglobulin genes has been further demonstrated by the recent observation of variable- and constant-region gene segments as well as joining segments and putative diversity segments. We report here the characterization of cDNA and genomic clones encoding human T-cell receptor beta-chain genes. There are two constant-region genes (C beta 1 and C beta 2), each capable of rearrangement and expression as RNA. The gene arrangement, analogous to that of mouse beta-chain genes, shows strong evolutionary conservation of the dual C beta gene system in these two species.  相似文献   

2.
3.
A multitude of different antigens can be recognized by T cells through specific receptors. Both the alpha- and beta-chains of the T-cell receptor contribute to the antigen recognition portion. The repertoire of beta-chain variable region (V beta) gene segments is limited to some 20 elements which seem to be used randomly in different T cells. Diversity at the beta-chain level can be created in several ways: a multiplicity of germline gene segments; combinatorial diversity by rearranging different V, diversity (D), joining (J) and constant (C) region elements; junctional diversity by joining gene segments at different sites; N-region diversity, that is, insertion of random nucleotides at junctional sites; and somatic mutation. However, the major sources and the extent of diversity of the T-cell receptor are unclear. To address this issue, 42 H-2Kb-restricted, 2,4,6-trinitrophenyl (TNP)-specific cytotoxic T-cell (Tc) clones from C57BL/6 mice were characterized with respect to expression of different beta-chain gene segments in messenger RNA using specific oligonucleotide probes. We report here that nearly half of the Tc clones use identical elements for productive beta-chain gene rearrangement. Thus, there is a restriction in the use of beta-chain gene segments in this panel of Tc clones which favours a particular V beta--D beta--J beta--C beta combination with a defined D beta element.  相似文献   

4.
An RNA map predicting Nova-dependent splicing regulation   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
7.
B Arden  J L Klotz  G Siu  L E Hood 《Nature》1985,316(6031):783-787
  相似文献   

8.
G K Sim  J Yagüe  J Nelson  P Marrack  E Palmer  A Augustin  J Kappler 《Nature》1984,312(5996):771-775
The T-cell receptor has been studied intensely over the past 10 years in an effort to understand the molecular basis for major histocompatibility complex (MHC) restricted antigen recognition. The use of anti-receptor monoclonal antibodies to isolate and characterize the receptor from human and murine T-cell clones has shown that the protein consists of two disulphide-linked glycopeptides, alpha and beta, distinct from known immunoglobulin light and heavy chains. Like immunoglobulin light and heavy chains, however, both the alpha- and beta-chains are composed of variable and constant regions. Molecular cloning has revealed that the beta-chain is evolutionarily related to immunoglobulins, and is encoded in separate V (variable), D (diversity), J (joining) and C (constant) segments that are rearranged in T cells to produce a functional gene. We report here cDNA clones encoding the alpha-chain of the receptor of the human T-cell leukaemia line HPB-MLT. Using these cDNA probes, we find that expression of alpha-chain mRNA and rearrangement of an alpha-chain V-gene segment occur only in T cells. The protein sequence predicted by these cDNAs is homologous to T-cell receptor beta-chains and to immunoglobulin heavy and light chains, particularly in the V and J segments.  相似文献   

9.
10.
基于前期已获得的中华蜜蜂(简称中蜂)幼虫肠道转录组数据,利用TopHat2软件在正常(AcCK)及球囊菌胁迫的中蜂幼虫肠道样品(AcT1、AcT2、AcT3)中共鉴定出发生于9124个基因的57327个可变剪切事件,其中以基因间(17.68%)、可变3′端剪切(15.32%)、外显子跨越(14.12%)和可变5′端剪切(12.81%)类型为主.Venn分析结果显示4个肠道样品的共有可变剪切基因数为8111个,特有可变剪切基因数分别为272、189和385个.GO分类结果显示共有可变剪切基因涉及47个条目,AcT1、AcT2、AcT3的特有可变剪切基因分别富集于24、20和34个条目.KEGG代谢通路富集分析结果显示,共有可变剪切基因富集在327个代谢通路,基因富集数最多的是RNA转运、内质网蛋白加工及核糖体;AcT1、AcT2、AcT3的特有可变剪切基因分别富集在22、46和83个代谢通路.结果揭示了可变剪切基因在宿主的胁迫响应过程中的重要作用.  相似文献   

11.
12.
13.
Sex in flies: the splice of life   总被引:70,自引:0,他引:70  
B S Baker 《Nature》1989,340(6234):521-524
  相似文献   

14.
A Winoto  S Mjolsness  L Hood 《Nature》1985,316(6031):832-836
The vertebrate immune system uses two kinds of antigen-specific receptors, the immunoglobulin molecules of B cells and the antigen receptors of T cells. T-cell receptors are formed by a combination of two different polypeptide chains, alpha and beta (refs 1-3). Three related gene families are expressed in T cells, those encoding the T-cell receptor, alpha and beta, and a third, gamma (refs 4-6), whose function is unknown. Each of these polypeptide chains can be divided into variable (V) and constant (C) regions. The V beta regions are encoded by V beta, diversity (D beta) and joining (J beta) gene segments that rearrange in the differentiating T cell to generate V beta genes. The V gamma regions are encoded by V gamma, J gamma and, possibly, D gamma gene segments. Studies of alpha complementary DNA clones suggest that alpha-polypeptides have V alpha and C alpha regions and are encoded by V alpha and J alpha gene segments and a C alpha gene. Elsewhere in this issue we demonstrate that 18 of 19 J alpha sequences examined are distinct, indicating that the J alpha gene segment repertoire is much larger than those of the immunoglobulin (4-5) or beta (14) gene families. Here we report the germline structures of one V alpha and six J alpha mouse gene segments and demonstrate that the structures of the V alpha and J alpha gene segments and the alpha-recognition sequences for DNA rearrangement are similar to those of their immunoglobulin and beta-chain counterparts. We also show that the J alpha gene-segment organization is strikingly different from that of the other immunoglobulin and rearranging T-cell gene families. Eighteen J alpha gene segments map over 60 kilobases (kb) of DNA 5' to the C alpha gene.  相似文献   

15.
T lymphocytes recognize cell-bound antigens in the molecular context of the self major histocompatibility complex (MHC) gene products through the surface T-cell receptor(s). The minimal component of the T-cell receptor is a heterodimer composed of alpha and beta subunits, each of relative molecular mass (Mr) approximately 45,000 (refs 1-3). Recently, complementary DNA clones encoding these subunits have been isolated and characterized along with that of a third subunit of unknown function, termed gamma (refs 4-9). These studies revealed a primary structure for each subunit that was clearly similar to that of immunoglobulin and indicated a somatic rearrangement of corresponding genes that are also immunoglobulin-like. Recently, the analysis of the sequence organization of the T-cell receptor beta-chain and T-cell-specific gamma-chain gene families has been reported. We now present an initial characterization of the murine T-cell receptor alpha-chain gene family, and conclude that although it is clearly related to the gene families encoding immunoglobulins, T-cell receptor beta-chains and also T-cell gamma-chains, it shows unique characteristics. There is only a single constant (C) region gene segment, which is an exceptionally large distance (approximately 20-40 kilobases (kb) in the cases studied here) from joining (J) gene segments. In addition, the J cluster and the variable (V) segment number seen to be very large. Finally, in the case studied here, a complete alpha-chain gene shows no somatic mutation and can be assembled directly from V alpha, J alpha and C alpha segments without inclusion of diversity (D alpha) segments.  相似文献   

16.
17.
18.
19.
Autoregulation of microRNA biogenesis by let-7 and Argonaute   总被引:1,自引:0,他引:1  
Zisoulis DG  Kai ZS  Chang RK  Pasquinelli AE 《Nature》2012,486(7404):541-544
  相似文献   

20.
Signal-dependent regulation of splicing via phosphorylation of Sam68   总被引:28,自引:0,他引:28  
Matter N  Herrlich P  König H 《Nature》2002,420(6916):691-695
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号