首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
中国东部季风区大气降水δ18O的特征及水汽来源   总被引:5,自引:0,他引:5  
季风环流是水汽输送的重要载体, 它通过影响和制约大尺度水汽输送场的分布和水汽收支状况对季风区的降水产生影响. 对我国受季风影响最为显著的东部地区大气降水中稳定氢氧同位素的研究将有助于对季风降水机制的理解. 2005~2006年各月, 在中国大气降水同位素观测网络(CHNIP)位于该地区的17个观测站点进行了月大气降水样品的采集. 根据得到的274组稳定氢氧同位素组分所建立的局地大气降水线方程δD = 7.46δ18O + 0.90, 反应了该地区独特的局地气候特点. δ18O值由沿海向内陆地区逐渐贫化, 并且南部和东北地区δ18O值年内变化存在周期性. 不同地区影响降水同位素的气候因子不同, 由南向北, 温度效应逐渐增强, 降水量效应由全年存在变为只在主要降水期存在. 控制δ18O的地理因子存在差异: 南部和华北地区为高程, 东北地区是纬度. 此外, δ18O对季风的进退、雨带的移动以及台风/强热带风暴等强对流天气的运动路径有一定的示踪作用.  相似文献   

2.
祁连山七一冰川积雪和大气降水中的氢氧稳定同位素变化   总被引:2,自引:0,他引:2  
报道祁连山七一冰川夏季降水和冰川表层积雪中氢氧稳定同位素的观测资料, 并分析其与气象要素的关系. 在事件尺度上, 七一冰川夏季降水中δ18O的变化不存在温度效应, 但显示出明显的降水量效应. 水汽输送过程追踪与降水及降水中稳定同位素对比研究显示, 这种降水量效应既反映了水汽来源的差异, 与季风活动相关, 也与云中水汽冷却程度、水滴在降落过程中的蒸发及和周围水汽的交换相关. 由于冬季降水极少, 积雪剖面主要体现夏、春、秋三季的降水状况. 夏季降水的δ18O值低, 而春、秋季降水的δ18O高. 夏季降水的大气水线为δD= 7.6 δ18O + 13.3, 与祁连山南麓德令哈的大气水线相近. 积雪的大气水线为δD = 10.4 δ18O + 41.4, 显示出异常高的斜率和截距. 积雪剖面的过量氘(d)值与δ18O存在明显的正相关, 说明从春到夏, 随着降水同位素比率的降低, d值降低, 反之, 从初秋至早春, d值增加, 从而导致大气水线的高斜率和高截距. d的变化指示春秋季水汽可能来源于附近的内陆蒸发或干燥的西风气流在经过相对温暖的水体时的快速蒸发, 而夏季水汽则由季风带来. 同时, 这也表明季风的影响范围可达祁连山西段.  相似文献   

3.
大气水汽稳定同位素的变化不仅在长时间尺度上与气候因子相关,而且对于极端天气事件也十分敏感.本文通过分析青藏高原中部那曲地区大气水汽?18 O变化,发现2013年10月15~16日在印度洋台风"费林"暴发期间,大气水汽?18 O达极低值?42.1‰,平均值低于一般值16.6‰.大气水汽同位素与同期气象观测结果对比分析表明该极低值与水汽来源相关.TRMM卫星日降水量分布及水汽反向追踪模型结果显示,该水汽来源于南部的孟加拉湾.这表明即使在季风结束期,印度洋水汽可以通过极端天气事件影响到青藏高原;这也表明极端天气事件有可能通过稳定同位素信号影响不同介质的稳定同位素记录.  相似文献   

4.
那曲河流域季风结束前后大气水汽中δ 18O变化特征   总被引:5,自引:0,他引:5  
在青藏高原中部那曲河流域2004年8~10月收集了大气水汽样品. 研究结果表明, 该流域大气水汽中 δ 18O值存在一定的波动, 尤其在季风撤退前后, 波动最为显著. 而且大气水汽中δ 18O与露点温度的波动趋势是明显反向的. 降水事件对该流域大气水汽中δ 18O波动具有绝对的影响. 在整个大气水汽样品收集时段, 降水发生时, 大气水汽中δ 18O都为低值. 不同的水汽来源对该流域大气水汽中δ 18O具有一定的影响, 特别是强烈的西南季风活动带来的海洋性水汽导致该流域大气水汽中δ 18O出现相对低值, 而当该流域主要受大陆性水汽影响时, 大气水汽中δ 18O相对较高.  相似文献   

5.
徐彦伟  康世昌  张玉兰  张拥军 《科学通报》2011,56(13):1042-1049
青藏高原中部和南部在夏季风期间的降水主要来自印度季风输送的水汽和高原自身蒸发的水汽. 然而, 目前两种水汽对降水的贡献率还不清楚. 夏季风期间(6~9 月), 纳木错湖区大气降水、河水中过量氘明显比纳木错以南地区降水中过量氘高, 这反映了纳木错湖水蒸发水汽与当地大气水汽的混合. 本文根据地表水体蒸发水汽对当地大气水汽贡献率的估算理论, 基于相关水体(降水、河水、大气水汽和湖水)中稳定同位素数据, 初步估算出近年夏季纳木错湖水蒸发水汽对当地大气水汽的贡献率平均约为28.4%~31.1%.  相似文献   

6.
藏东南不同季节水体中氧同位素的高程递减变化研究   总被引:2,自引:0,他引:2  
杨晓新  徐柏青  杨威  曲冬梅  林平南 《科学通报》2009,54(15):2140-2147
通过分季节研究藏东南地区水体中氧同位素(δ18O)的变化,揭示了δ18O随海拔变化的特征,进而分析了相关的大气环流过程.研究结果表明,藏东南河水的δ18O和降水中δ18O的变化趋势一致;同时也表明,藏东南河水中δ18O随海拔的升高而降低的特征在不同时期有差异.季风期河水的δ18O值最低,其随高程递减的速率也最小.西风期河水的δ18O值也较低,仅次于季风降水期,随海拔递减的速率也较小.季风前河水中的18O最富集,且与海拔的负相关线性关系相对最不显著;而季风后河水中δ18O值随海拔变化的递减速率最大.河水的δ18O值在不同季节与高程效应的符合程度不同,反映了不同的河水补给的影响.需要说明的是,虽然不同季节的采样数目并不相同,但各自的δ18O-H线性相关系数都达到了0.05的置信度.因此,不同季节的河水δ18O的高程效应代表了氧同位素在大气环流和地表过程作用下的变化特征.  相似文献   

7.
季风降水中δ18O与高空风速关系   总被引:3,自引:1,他引:3  
统计分析了西南季风区IAEA/WMO降水观测站曼谷、孟买、新德里、昆明及拉萨夏季降水中δ18O资料及各站高空大气风速资料发现, 高空风速与δ18O之间存在显著的正相关关系. 分析表明, 季风期间季风区上空存在一个季风水汽层, 雨滴在下落过程中通过这一水汽层并与季风水汽发生稳定同位素交换, 是导致高空风速和δ18O正相关的主要原因. 在西南季风区除温度和降水量外, 高空风速也是影响季风降水中δ18O变化的一个主要因子.  相似文献   

8.
谢营  徐柏青  邬光剑  林树标 《科学通报》2012,(15):1353-1361
在藏南羊卓雍错流域的沉错和宁金岗桑冰川分别钻取了浅湖芯和冰芯,对过去80年来湖芯中记录的陆源正构烷烃单体氢稳定同位素(δDwax)与冰芯氢稳定同位素(δDice)进行比较,发现二者具有较好的相关性(R2=0.41,P=0.047),显示了陆生植物叶蜡正构烷烃单体氢稳定同位素对大气降水氢稳定同位素的继承效应.但δDwax与δDice之间的分馏(εwax-ice)与冰芯积累量(降水量)呈现反相关关系(R2=0.65,P=0.0051),说明气候的干湿变化对δDwax有显著的影响.因此降水稳定同位素和降水量是影响δDwax的两个重要因素.  相似文献   

9.
喜马拉雅山南坡降水与河水中δ18O高程效应   总被引:2,自引:0,他引:2  
水体中稳定同位素的垂直递减率不仅是反映稳定同位素水文循环过程的指标,也是重建青藏高原古海拔高度的重要变量.喜马拉雅山南坡垂直落差大,是直接监测研究降水与河水同位素垂直递减率的理想地区.本研究根据喜马拉雅山南坡沿垂直梯度从1320m到6700m的降水、雪冰以及河水的δ18O变化,计算了该地区降水及河水δ18O的垂直递减率.结果表明,喜马拉雅山南坡多年平均降水中δ18O的垂直递减率为0.15‰/100m,3个站点计算的δ18O在年尺度上的垂直递减率为0.17‰/100m.两个结果十分接近,但都远低于全球0.28‰/100m.而且还发现非季风期降水的垂直递减率高于季风期,而河水中δ18O的垂直递减率普遍高于降水.  相似文献   

10.
季风降水中δ18O与季风水汽来源   总被引:9,自引:0,他引:9  
利用稳定同位素瑞利分馏模型, 根据季风区可降水量与源区可降水量的比率f与季风降水中δ18O之间存在反相关关系这一基本假设, 提出了一种确定季风水汽来源的新方法. 应用西南季风区典型代表站新德里和东南季风区典型代表站香港夏季同位素资料, 对此方法的可行性进行了实例分析验证. 结果表明, 利用此方法确定的两站点季风降水的水汽来源与基本大气环流背景相吻合. 研究结果对于追踪季风水汽来源具有重要意义.  相似文献   

11.
天气尺度下丽江季风降水中δ18O变化   总被引:5,自引:0,他引:5  
根据丽江2003年夏季日降水中δ18O资料, 结合日平均NCEP/NCAR再分析资料, 研究天气尺度下季风降水中δ18O变化. 研究发现, 丽江夏季日降水中δ18O变化具有显著的“降水量效应”, 而“温度效应”不存在. 季风活跃期和不活跃期的交替出现可能对天气尺度下δ18O的变化具有显著的影响, 同时季风降水的再循环过程可能对季风末期降水中δ18O变化具有显著的影响. 这些影响对季风降水中稳定同位素所特有的“降水量效应”产生严重干扰. 另外, 研究表明丽江夏季天气尺度下δ18O变化主要受大尺度印度低压系统控制. 研究结果对于季风区稳定同位素“降水量效应”以及本区古气候的研究具有重要意义.  相似文献   

12.
黑河源区水汽来源及地表径流组成的稳定同位素证据   总被引:9,自引:0,他引:9  
通过对黑河源区不同水体稳定氢(δD)和氧(δ(18)O)同位素比率的测定及对过量氘(d-excess)的计算,结合美国环境预报中心和国家大气研究中心(NECP/NCAR)再分析资料,对研究区大气水汽来源及地表径流组成进行了初步研究.结果表明,黑河源区各样点降水δ(18)O季节变化的一致性表明其水汽来源相同;夏季,野牛沟...  相似文献   

13.
喜马拉雅山中段高过量氘与西风带水汽输送有关   总被引:9,自引:2,他引:7  
喜马拉雅山中段希夏邦马达索普冰芯及冰川融水中的过量氘显著异常, 其值远远高于全球降水中过量氘均值及周围地区降水中过量氘值. 附近站点聂拉木连续一年以上降水中过量氘的变化揭示了这一异常现象. 研究发现这一异常与该地区降水的水汽来源地的季节变化有关. 发现在季风爆发期, 该地区降水受西南季风影响, 过量氘的值与其他受海洋水汽来源的地区一样, 为低值; 而在非季风月份, 水汽以西风输送为主, 降水中过量氘为高值. 而且在该地区冬春季降水占全年降水的比例较大, 结果使得该地区整年平均降水中过量氘的值显著高于青藏高原南部其他地区. 这一结论对该地区的冰芯研究有重要意义, 表明喜马拉雅山中段冰芯的水汽来源并非全部来源于西南季风的水汽输送, 而西风水汽输送占有很大比例.  相似文献   

14.
基于210Pb和230Th两种定年方法, 并结合黄龙洞石笋d 18O测试数据建立了青藏高原东部近半个世纪以来平均分辨率达到年际的亚洲季风变化序列. 通过对黄龙洞石笋氧同位素体系的研究, 表明现代洞穴滴水与洞穴周围大气降水的氧同位素具有一致性, 石笋方解石与洞穴滴水是在同位素平衡分馏状态下沉积的. 与器测数据对比分析发现, 黄龙洞石笋δ18O的轻重变化主要受西南季风(印度季风)带来的降水量效应所控制, 受温度的影响比较弱. 石笋δ 18O在短时间尺度上的轻重变化主要反映了季风降水δ 18O的信息, 指示了西南季风的年际变化. 最近50 a来, 四川黄龙洞石笋的氧同位素组成具有逐渐变重的趋势, 即逐渐变得相对富集18O, 与亚洲季风区其他石笋δ 18O具有相同的变化趋势, 而且也与东亚、南亚季风指数所指示的季风减弱趋势相一致, 与全球季风指数密切相关. 这种亚洲季风的减弱趋势主要受太阳辐射变化的影响, 并紧密地匹配于高空平流层的温度变化.  相似文献   

15.
对来自GNIP的我国和印度8个站点的加权平均年大气降水氧同位素(δ18Op)和年降水量数据进行的线性相关分析结果表明:我国华南地区的δ18Op与降水量的关系不显著,说明用该区域相关的古记录来指示降水量的变化,其价值和意义是有限的;印度季风区4个站点的δ18Op与年降水量之间普遍更显著的负相关关系,说明印度季风区δ18Op变化很可能受控于年际尺度的"降水量效应",印度夏季风强度变化可能通过"瑞利分馏效应"对东亚季风区δ18Op产生重要影响.  相似文献   

16.
通过分析更尕海轮藻碳酸盐结壳、软体动物壳体等碳氧同位素的季节变化,结合湖水溶解无机碳(DIC)碳同位素(δ13CDIC)和湖水氧同位素(δ18OLake),探讨其与现代湖泊水体环境的关系.结果表明,5~8月,轮藻植物生长速率约为5~6 cm/月;期间,沉水植物强烈的光合作用和碳酸盐的析出导致湖水pH升高,同时湖水DIC和Ca2+含量显著下降.结合流域水体氧同位素、气温和降水量等观测资料,指出更尕海湖泊水位季节变化是区域降水量与蒸发作用平衡的结果;湖水氧同位素组成主要受入湖水氧同位素组成、湖泊内蒸发过程和降水量等的影响.软体动物壳体氧、碳同位素组成可分别代表δ18OLake与δ13CDIC的年际变化.然而,轮藻结壳氧同位素与δ18OLake之间非平衡分馏效应显著,有待于进一步开展工作.  相似文献   

17.
姚檀栋  周行  杨晓新 《科学通报》2009,54(15):2124-2130
根据青藏高原上建立的TORP(Tibetan Observation and Research Platform)平台的28个站点获取的降水δ18O的研究, 探讨了季风期河水δ18O的海拔递减率, 也讨论了全年河水δ18O的高程效应. 研究发现, 青藏高原内部降水δ18O广泛受到不同水汽来源的影响. 印度季风对青藏高原降水及河水δ18O的组成起着重要作用. 总体而言, 受季风影响地区水体中δ18O比西风影响区的水体δ18O更贫化, 反映了西南来的海洋水汽在长途传输和随喜马拉雅山爬升过程使δ18O逐步贫化. 由于季风环流对高原南部气候的控制, 季风期河水δ18O随海拔的递减率更大. 综合考虑季风期和非季风期河水δ18O的高程效应发现, 其河水δ18O的海拔递减率大于不考虑季风期河水同位素组成的海拔递减率. 因为青藏高原上河水和降水的高程效应是季风和非季风期水汽共同作用的结果, 因此在利用稳定氧同位素恢复古高度时, 需要考虑季风期高原水体中δ18O的组成和高程效应.  相似文献   

18.
余武生  马耀明  孙维贞  王瑜 《科学通报》2009,54(15):2131-2139
根据青藏高原西部阿里地区狮泉河和改则二站点降水中δ18O实测值和相关气象资料, 研究发现, 在一定程度上, 温度能够影响狮泉河和改则二站点降水中δ18O变化. 在夏季, 特别是同一降水过程中, 两个站点降水中δ18O变化趋势非常一致, 且在季风活跃期, 降水中δ18O都出现多次明显的低值, 这与西南季风水汽输送密切相关, 而在季风间歇期, 降水中δ18O仍然表现相对高值, 水汽主要来源于局地水汽的再循环; 在非季风时段, 降水中δ18O与温度的正相关性都更为显著, 该研究区域降水的水汽主要受局地环流和西风环流控制. 另外, 该研究区域的蒸发条件也同样影响降水中δ18O变化. 通过该区域及其毗邻地区降水中δ18O空间分布特征的研究, 揭示了5月底或6月初始至8月底或9月初是青藏高原不同水汽来源的一个重要的时间分界线, 而在空间上, 位于青藏高原北部的西昆仑山与唐古拉山是一条重要的气候分界线.  相似文献   

19.
喜马拉雅山中段达索普最新粒雪芯高分辨率化学记录   总被引:1,自引:0,他引:1  
王朋岭  姚檀栋  田立德  邬光剑  李真  杨威 《科学通报》2007,52(21):2549-2555
分析了2006年8月钻取的16.8 m达索普粒雪芯δ18O和主要离子浓度记录的季节变化与年际变化. 分析发现, 达索普粒雪芯中δ18O和地壳源离子组分(Ca2+和Mg2+)浓度的显著季节变化为粒雪芯定年和季风、非季风层位的划分提供了依据. 该粒雪芯高分辨、多参数化学数据详细记录了1991年以来喜马拉雅山中段高海拔地区降雪化学特征, 该地降水化学主要受地壳源组分和人类污染源组分的影响, 海盐组分贡献相对较小. 研究表明达索普粒雪芯主要离子浓度的季节差异主要受盛行气团性质、区域大气环流形式及降水的季节变换所控制, 同时粒雪芯年积累量是控制离子沉积通量变化的重要因子.  相似文献   

20.
第三极西风和季风主导流域源区降水呈现不同梯度特征   总被引:1,自引:0,他引:1  
利用位于第三极东南部受季风主导的长江、黄河、澜沧江、怒江上游和雅鲁藏布江流域,以及位于西部受西风主导的叶尔羌河、印度河、阿姆河和锡尔河上游流域源区256个气象站的降水数据,分析了各流域降水随海拔变化的梯度关系;基于ERA5数据,通过分析水汽含量、对流有效势能和抬升凝结高度与各流域内海拔的变化关系,探讨了不同气候系统主导的流域呈现不同梯度特征的原因;通过水文模型模拟径流反向验证降水梯度校正方法在推算高海拔山区降水时的可行性.结果表明:(1)位于季风区的长江上游、黄河上游、澜沧江、怒江和雅鲁藏布江流域降水随海拔增加而降低(17~128 mm/100 m),地形效应仅在小尺度呈现;西风主导的叶尔羌河、印度河、阿姆河和锡尔河上游流域降水随海拔增加而增加(5~64 mm/100 m),地形效应明显.(2) ERA5与气象站观测降水数据在不同流域源区表现出一致的降水梯度特征.季风区流域降水随海拔增加而减少,主要由水汽含量随海拔增加而减少所致,地形效应在局地尺度依然有所反映;西风区流域降水随海拔增加而增加,主要受抬升凝结高度降低和对流有效势能增加的影响.(3)陆面水文模型反向验证结果表明,在降水地形效应明显的流域,对低海拔站点降水进行地形校正是提高通过降水变率推算高海拔区域降水可靠性、提高水文模拟精度的一个有效途径.研究结果对第三极流域高海拔山区降水数据的地形校正有参考价值;对第二次青藏高原综合科学考察中降水观测的选点有指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号