首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用混酸氧化多壁碳纳米管(MWCNTs),然后与含磷化合物2–(6,H–二苯并–5–氧杂–6–膦酰杂–6–苯基)–1,4–对苯二酚(DOPO-HQ)反应,对MWCNTs进行功能化修饰,并用功能化的碳纳米管(MWCNTs-P)对环氧树脂进行改性.对比了MWCNTs与MWCNTs-P对环氧树脂力学性能和阻燃性的影响,结果表明,MWCNTs与MWCNTs-P的加入均能提高环氧树脂的力学性能,MWCNTs-P改性效果更好.当MWCNTs-P添加量为0.5%时,环氧树脂的冲击强度提高了232%;SEM结果显示,加入碳纳米管使环氧树脂复合材料的韧性有一定程度的提高.MWCNTs-P的添加量为1.0%时,复合材料的拉伸性能和弯曲性能最好.极限氧指数(LOI)测试结果表明,MWCNTs-P提高了环氧树脂的阻燃性,MWCNTs-P的添加量为0.5%时,复合材料的LOI达到30.2%.  相似文献   

2.
碳纳米管改性硅橡胶的电学特性   总被引:3,自引:0,他引:3  
用碳纳米管(CNT)填充硅橡胶制备了碳纳米管/硅橡胶复合材料,并研究了复合材料的电学特性。结果表明:随着碳纳米管含量的增加,复合材料的电阻率急剧下降,当wCNT=0.075时,电阻率下降了约10个数量级。随着拉力增大,复合材料的力敏效应增大。复合材料存在明显的弛豫现象:拉力越大,电阻率的弛豫时间越长;碳纳米管含量越大,复合材料的弛豫现象越不明显,可以用R(t)=(R0-R∞)exp(t/τ) R∞来描述复合材料的弛豫过程。  相似文献   

3.
通过对多壁碳纳米管进行表面处理,用超声分散和模具浇注成型法制备了碳纳米管/环氧树脂纳米复合材料。研究了碳纳米管含量和表面处理对碳纳米管/环氧树脂复合材料力学性能和断面形貌的影响,分析了碳纳米管对环氧树脂的增强机理。结果表明,随着碳纳米管含量的增加,碳纳米管/环氧树脂复合材料的拉伸强度和弯曲强度及模量先增加后减小;当碳纳米管的质量分数为0.5%时,复合材料的拉伸强度、弯曲强度和弯曲模量分别达到最大值69.8MPa、136.9MPa和3.72GPa,比纯环氧树脂提高了33.9%、29.3%和4.8%;当碳纳米管的质量分数为1.5%时,拉伸模量达到最大值2050.5MPa,比纯环氧树脂提高了7.3%。  相似文献   

4.
聚苯乙炔/碳纳米管复合材料的制备及导电性   总被引:2,自引:0,他引:2  
以无水A lC l3为催化剂合成了聚苯乙炔(PPA)、用浓H2SO4进行磺化改性,并通过共混制得了PPA/碳纳米管(CNT)及磺化PPA/CNT复合材料;研究了复合材料的导电性及电导率与CNT含量的关系。结果表明:磺化PPA/CNT导电阈值比PPA/CNT的降低了1%,前者达到极限电导率所需CNT的量是后者的10%;X-射线衍射(XRD)测试表明,在CNT界面上的磺化PPA有新的晶型产生。  相似文献   

5.
为提高PHBV与TPU两相之间的相互作用力,改善复合材料的力学性能及热稳定性,采用熔融共混法制备了PHBV/TPU/CNTs复合材料。用扫描电镜、X射线衍射仪、差示扫描量热计、热重分析仪和万能试验机分析了材料的表面形貌、晶体结构、热学性能以及力学性能。研究表明:添加碳纳米管(CNTs)后PHBV与TPU两相界面未产生分离,两相之间的作用力有所提高;碳纳米管的加入促进了PHBV的结晶且使其由熔融双峰变为熔融单峰。此外,PHBV/TPU/CNTs复合材料的力学性能及热稳定性也有了显著提高。相比纯PHBV,复合材料的初始降解温度提高15℃,P/30T/3CNTs复合材料的断裂伸长率提高1 800%左右。  相似文献   

6.
碳纳米管增强铝基复合材料的力学和物理性能   总被引:1,自引:0,他引:1  
采用磁力搅拌与放电等离子烧结技术制备了碳纳米管(CNT)增强铝基复合材料.对试样进行了扫描电镜和透射电镜表征,测试了试样的力学性能、摩擦性能、电学性能和热学性能.当碳纳米管在试样中的质量分数为1%时,可在铝基体中均匀分布且CNT/Al界面结合良好,此时试样的抗拉强度和硬度较纯Al分别提高了29.4%和15.8%.在获得最佳力学性能强化和最佳减磨效果的同时,试样电导率较纯Al仅降低8.0%.碳纳米管可提高基体的热导率,但强化效果不明显.  相似文献   

7.
合成了一种侧链型液晶单体4-(4’-烯丙氧基)苯甲酰氧基联苯单酯,将不同含量的CNT接枝到侧链液晶单体上,然后液晶单体发生聚合反应生成液晶复合材料.采用偏光显微镜(POM)、扫描电子显微镜(SEM)、差示扫描量热仪(DSC)等考察了碳纳米管的分散排列情况以及复合材料的热性能,测试结果显示,少量的碳纳米管能够较好地分散在复合材料基体中;DSC结果显示,CNT的引入提高了复合材料的清亮点,增加了液晶区间.  相似文献   

8.
在自行设计与搭建的包缠纱可控制备装置上,以碳纳米管(CNT)纱线为皮纱和涤纶(PET)长丝为芯纱包缠后分别得到不同捻度的CNT/PET包缠纱,并对包缠纱的形态结构、拉伸性能、电学性能以及应变传感性能进行了系统表征和分析.结果表明,碳纳米管纱线与涤纶长丝包缠后,不同捻度的包缠纱结构紧密均匀;随着捻度的增加,包缠纱的断裂伸长和断裂强力逐渐上升,捻度为2 500捻/m时,包缠纱的断裂伸长和断裂强力分别提高为CNT纱线的5倍和10倍左右.同时,当捻度为1 000~1 400捻/m时,包缠纱具有双传感系数特征:在拉伸的初始阶段,传感系数较低,约为0.50;当拉伸应变高于23%以后,传感系数急速上升至1.57左右,与碳纳米管纱线的传感系数(1.69)相当.当捻度高于1 400捻/m时,包缠纱的传感性能出现明显的波动.  相似文献   

9.
为提高PHBV与TPU两相之间的相互作用力,改善复合材料的力学性能及热稳定性,采用熔融共混法制备了PHBV/TPU/CNTs复合材料。用扫描电镜、X射线衍射仪、差示扫描量热计、热重分析仪和万能试验机分析了材料的表面形貌、晶体结构、热学性能以及力学性能。研究表明:添加碳纳米管(CNTs)后PHBV与TPU两相界面未产生分离,两相之间的作用力有所提高;碳纳米管的加入促进了PHBV的结晶且使其由熔融双峰变为熔融单峰。此外,PHBV/TPU/CNTs复合材料的力学性能及热稳定性也有了显著提高。相比纯PHBV,复合材料的初始降解温度提高15℃,P/30T/3CNTs复合材料的断裂伸长率提高1800%左右。  相似文献   

10.
为获得性能优良的复合材料,利用辐射交联和喷雾干燥法,制备全硫化交联碳纳米管(CNT s)/粉末丁苯橡胶(SBR)复合材料,用熔融共混法对聚丙烯进行三元体系改性。结果表明:当SBR、CNT s和苯甲酸钠(相对于纯PP的质量)用量分别为15%、2%和2%时,改性后PP的冲击韧性提高了120%,拉伸强度提高了6%,扯断伸长率提高了55%,弯曲强度提高了20%。  相似文献   

11.
在绿色工业生产中使用木材相关的衍生物以促进节能减排是大势所趋,高长径比的碳纳米管(CNT)展现出的优异性能也同样被学者所熟知。该研究提出了一种简单的方法,通过有效的化学预处理和熔融-热压混合法,大规模地制备碳纳米管(CNT)/木质纤维素纤维(WCF)/高密度聚乙烯(HDPE)三元复合材料。在3%的碳纳米管(CNT)添加量下,CNT/WCF/HPDE三元复合材料的最大拉伸强度为15.68 MPa,最大弹性模量达到226.41 MPa,最大断裂伸长率高达99.3%,与WCF/HDPE相比,分别提高了63.7%、35.8%和99.0%。CNT/WCF/HPDE三元复合材料的结晶度也有6.5%的提高,结晶的协同效应促进了材料玻璃化转变温度的提升。  相似文献   

12.
采用分散聚合法合成聚苯乙烯微球(PS),并在其表面化学镀Cu Ni,得到PS@Cu Ni复合微球;以碳纳米管、PS@Cu Ni复合微球为填料,HDPE为基体,通过模压法制备HDPE/PS@Cu Ni/CNTs复合材料,实验表明:HDPE/PS@Cu Ni复合材料具有良好的导电性和介电性能,碳纳米管能提高PS@Cu Ni复合微球对HDPE材料的电磁屏蔽性能,在PS微球添加量30wt%的情况下添加3wt%碳纳米管,在频率7. 5~12. 5 GHz范围内,HDPE复合材料电磁屏蔽效能从5 d B提高到24 d B.  相似文献   

13.
应用差示扫描量热法(DSC)和Avrami模型分析聚苯硫醚(PPS)/碳纳米管(CNT)复合材料的等温结晶行为,分别考察了PPS和复合材料的结晶动力学参数以及结晶活化能,揭示了PPS的等温结晶特性和少量CNT对PPS结晶行为的作用。结果表明:随着结晶温度的升高,复合材料的结晶速率逐渐下降,说明复合材料的结晶是以依热成核控制为主;少量CNT的加入降低了PPS的结晶活化能,明显提高了PPS的结晶速率,同时使成核方式发生转变;纯PPS的Avrami指数n约为4,结晶方式为均相成核,而复合材料的Avrami指数n约为3,转变为异相成核;成核方式的转变大大的提高了PPS的结晶速率。  相似文献   

14.
PET/SiO_2纳米复合材料的力学性能和结晶性能研究   总被引:1,自引:0,他引:1  
采用熔融共混法,将纳米二氧化硅(SiO2)添加到聚对苯二甲酸乙二醇酯(PET)中,制备出PET/SiO2纳米复合材料,并对其力学和结晶性能进行研究。结果表明,添加微量纳米SiO2能显著提高PET材料的力学性能,纳米SiO2添加量为0.2质量份数时,纳米SiO2在PET基体中分散均匀,复合材料综合力学性能最佳,与纯PET相比,PET/SiO2纳米复合材料的缺口冲击强度、拉伸强度、弯曲强度和弯曲弹性模量分别提高了18%,20%,11%,14%;随着纳米SiO2添加量的增加,PET/SiO2纳米复合材料的结晶度和结晶温度有明显的提高。  相似文献   

15.
本研究调查了氧化石墨烯 (GO) 对 Mg–Zn–Mn (MZM) 纳米复合材料的力学和腐蚀行为、抗菌性能和电池响应的影响。通过半粉末冶金方法制备了具有不同含量 GO(0.5wt%、1.0wt% 和 1.5wt%)的 MZM/GO 纳米复合材料。通过硬度、压缩、腐蚀、抗菌和细胞毒性测试分析了GO对MZM纳米复合材料的影响。实验结果表明,随着GO含量的增加(0.5wt%和1.5wt%),MZM纳米复合材料的硬度值、抗压强度和抗菌性能增加,而细胞活力和成骨水平降低。添加 1.5wt% GO。此外,电化学检测结果表明,在 0.5wt% GO 中封装后 MZM 合金的腐蚀行为显着增强。总之,GO增强的 MZM 纳米复合材料可用于植入物应用,因为它们具有抗菌性能和较好的力学性能。  相似文献   

16.
碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是航空航天和聚变能源等高技术领域理想的高温结构材料,改善纤维与基体的界面结合是提高其力学性能的关键。本文采用化学气相沉积法在纤维表面原位生长碳纳米管,以达到改善纤维与基体的结合同时对复合材料进行二次增强的目的。结果表明,采用碳纳米管增强的SiCf/SiC复合材料的力学性能有不同程度的提高,特别是当碳纳米管的体积分数为5.31%时,复合材料的断裂韧性提高106.3%。纤维表面的碳纳米管层与纤维结合较弱,能够促进纤维的拔出,从而促进复合材料断裂韧性的提高;另外,碳纳米管的拔出对复合断裂韧性的提高也有一定的促进作用。  相似文献   

17.
采用化学镀法对碳纳米管进行表面镀镍处理,再利用真空液相烧结法制备出以镀镍碳纳米管为增强体的Mo_2FeB_2基金属陶瓷复合材料,借助SEM、EDS、硬度计等研究了添加镀镍碳纳米管对Mo_2FeB_2基金属陶瓷微观组织及力学性能的影响。结果表明,添加适量镀镍碳纳米管可细化Mo_2FeB_2基金属陶瓷组织并控制其孔洞尺寸及数量,显著提高其硬度及断裂韧性。当镀镍碳纳米管添加量为0.5%时,所得试样的晶粒最为细小,晶粒尺寸大约为1.2μm,材料的力学性能最佳,其硬度和断裂韧性分别达到1228.4HV0.3及15.90MPa·m12,相应增韧机制为裂纹偏转、桥接增韧、撕裂棱增韧和微孔洞增韧。  相似文献   

18.
以中间相沥青基炭纤维和中间相沥青为主要原料,并添加一定量多壁碳纳米管,通过热压成型和高温热处理工艺制备一维高导热C/C复合材料。采用偏光显微镜、扫描电镜、激光热导仪、电子万能试验机等对复合材料的微观结构、导热性能和力学性能进行表征。结果表明,碳纳米管的添加导致复合材料的孔隙率下降和体积密度升高,而且对复合材料的力学性能及不同方向的导热性能都有显著影响。随着碳纳米管添加量的增加,复合材料沿炭纤维轴向的室温热扩散系数逐渐降低,而垂直于纤维轴向的抗弯强度和室温热扩散系数均呈现先上升后下降的趋势。经过2900℃石墨化处理后,添加体积分数3%碳纳米管的复合材料垂直于纤维轴向的抗弯强度为113.4 MPa、热扩散系数为40.1mm~2/s,较未掺杂碳纳米管时分别提高了56%和79%。  相似文献   

19.
采用有机蒙脱土(OMMT)改性聚酰胺6(PA6),并用熔融共混注塑成型的方法制备了PA6/OMMT复合材料,研究了复合材料的力学性能、耐热性能和摩擦磨损性能.结果表明,OMMT提高了复合材料的力学性能和耐热性,改善了PA6的摩擦磨损性能:OMMT含量为4 wt%时,复合材料的冲击强度和拉伸强度最大,比纯PA6分别提高了12.5%和10.9%;含量为2%时,维卡软化点温度达到最大,为212℃;含量分别为2 wt%和3 wt%时,摩擦因数和磨损率最低,比PA6分别降低了69.6%和47.3%.  相似文献   

20.
采用熔融共混法将丙烯腈-丁二烯-苯乙烯(ABS)塑料与碳纳米管(CNTs)复合,并对所得的复合材料分析了其力学、电学、热解等性能。研究结果表明,添加ABS含量3%的CNTs可以大幅提高的力学性能,如:拉伸强度、弯曲强度、弹性模量;降低材料的表面电阻率;提高材料的热稳定性。T408牌号CNTs对复合材料提高幅度最大,拉伸强度提高近48%,弹性模量提高近127%,弯曲强度提高近73%,热失重温度提高大约10℃,表面电阻率相比纯ABS样下降约4个数量级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号