首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用ANSYS软件,采用直接耦合方法,对带有周向槽和径向槽的摩擦片在滑摩过程中的温度场和应力场进行仿真计算和分析。在计算过程中考虑了摩擦片和对偶钢片摩擦所产生的热分配情况,以及摩擦片与沟槽内润滑油和外界空气的热交换,并同时考虑了各种位移约束。研究发现在滑摩过程中摩擦片的最高温度出现在摩擦表面,最高等效应力出现在沟槽内,两者的最大值出现在滑摩过程的中前期,数值分别为148.1℃和146 MPa;在每个小摩擦表面会形成椭圆热区,并且温度中间高,四周低;沿半径方向,半径越大,温度越高,小摩擦面上的温度分布为凸抛物线型,沟槽面为凹抛物线型。  相似文献   

2.
热失效是混合动力汽车湿式离合器发生故障的主要原因之一。摩擦副滑摩过程中具有高度非线性,同时摩擦副温度场受到多个参数影响。为深入研究混合动力汽车离合器摩擦副温度场分布情况,通过搭建混合动力汽车离合器热结构耦合分析模型,对滑摩过程进行仿真计算。在此基础上,深入研究初始转速、接合油压、对偶钢片厚度和摩擦衬片材料等因素对摩擦副温度场的影响。  相似文献   

3.
多片离合器对偶钢片平均温度场等效计算模型   总被引:2,自引:2,他引:0  
针对多片离合器滑摩过程,研究了摩擦元件不同接触比对钢片温度场的影响。建立了有限厚钢片在移动热流输入作用下的温度场模型。采用有限元方法求解,得到钢片温度场及平均温度变化过程。提出一个等效全接触模型,用于计算钢片的平均温度,得到了厚度方向上温度场的解析解。结合有限元方法和等效全接触模型,研究了钢片厚度和相对滑摩转速对平均温度的影响。结果表明:等效全接触模型能够很好地计算不同接触比条件下的钢片平均温度;当钢片厚度较小时,平均温度会急剧升高;而当钢片厚度较大时,厚度变化对平均温度的影响很小;钢片平均温度随滑摩转速升高而线性升高。  相似文献   

4.
湿式换挡离合器温度场和应力场影响因素分析   总被引:6,自引:2,他引:4  
针对液力机械传动装置中的湿式换挡离合器,研究结合过程中影响摩擦副温度场和应力场分布的因素.运用大型有限元软件ABAQUS建立湿式换挡离合器摩擦副三维有限元模型,建模过程充分考虑了摩擦副之间的摩擦接触、相对旋转运动和热机耦合等因素,并分析了摩擦副相对转速差、对偶钢片厚度和工作油压对于对偶钢片温度场和应力场分布的影响.结果表明,高转速差使接触面中部区域的温度和应力都增加,加大盘面上的径向应力梯度.在一定厚度范围内,增加钢片厚度会加大接触面温度场和应力场分布的不均匀性.较高和较低的工作油压均会改善盘面温度和应力分布,但都会对车辆性能带来不利影响.  相似文献   

5.
湿式离合器热负荷仿真研究   总被引:3,自引:1,他引:2  
以综合传动装置中的湿式换挡离合器为研究对象,开展对偶钢片和摩擦片的热负荷仿真研究. 考虑了摩擦接触、热弹变形等边界条件,基于ABAQUS6.7建立了湿式换挡离合器总成的三维有限元模型. 揭示了摩擦片和对偶钢片在滑摩过程中温度场及应力场分布规律:其中盘面中部温升不明显,盘面两侧边缘温升明显,对偶钢片上的应力值随半径的增加而增大. 接触面不同区域的应力值随时间变化的规律不同,内环节点的应力值先增大后下降,外环节点的应力基本上一直增大.   相似文献   

6.
为了揭示液黏传动摩擦副温度场分布规律,以矿用刮板输送机可控启动装置为研究对象,基于热传导原理建立了摩擦副三维瞬时热传导方程,采用摩擦功率法推导了热流密度数学模型,确定了摩擦副的对流换热系数。在ANSYS Workbench中建立了摩擦副温度场有限元模型,分别研究了不同接合压力和相对转速及整个软启动过程中摩擦副的温度场分布特性。结果表明:摩擦片和对偶片具有相似的温度场分布规律,均是沿内径至外径方向先上升后下降,温度最大值出现在接近摩擦副外径处;摩擦副温度随接合压力和相对转速的增大而升高;摩擦片每个菱形区域中心温度高于四周区域,容易形成热斑;整个软启动过程中摩擦副温度逐渐升高,在软启动刚结束时达到最大值,摩擦副接触表面高温区向中心靠近。温度场仿真结果为后续的摩擦副热—结构耦合分析打下了基础,提供了相关的理论依据。  相似文献   

7.
为了揭示液黏传动摩擦副温度场分布规律,以矿用刮板输送机可控启动装置为研究对象,基于热传导原理建立了摩擦副三维瞬时热传导方程,采用摩擦功率法推导了热流密度数学模型,确定了摩擦副的对流换热系数,在ANSYS Workbench中建立了摩擦副温度场有限元模型,分别研究了不同接合压力和相对转速及整个软启动过程中摩擦副的温度场分布特性。结果表明:摩擦片和对偶片具有相似的温度场分布规律,均是沿内径至外径方向先上升后下降,温度最大值出现在接近摩擦副外径处;摩擦副温度随接合压力和相对转速的增大而升高;摩擦片每个菱形区域中心温度高于四周区域,容易形成热斑;整个软启动过程中摩擦副温度逐渐升高,在软启动刚结束时达到最大值,摩擦副接触表面高温区向中心靠近。温度场仿真结果为后续的摩擦副热—结构耦合分析打下了基础,提供了相关的理论依据。  相似文献   

8.
针对离合器接合过程中,压盘滑摩温度过高发生的烧蚀、热变形现象,利用ABAQUS仿真软件建立了三维有限元分析模型。结合压盘的实际工作状况采用直接耦合法进行热结构耦合仿真,得到了压盘的温度场与应力场,并研究了滑摩转速、压力和压盘厚度对压盘温度场及应力场的影响,同时针对翘曲变形,通过在滑摩面增加内锥度对压盘结构进行了优化。结果表明:高转速差会增大压盘滑摩温度与应力,压盘摩擦接触区域向内径移动,翘曲变形更加严重;压力的增大同样会增大滑摩温度与应力,但对摩擦接触的影响较小;压盘厚度增大能增加压盘的热容量,同时也会使温度与应力更加集中;增加压盘内锥度能显著改善压盘滑摩面的温度与应力分布,最高值分别下降了11.8%、5.4%,摩擦副有效接触面积增加,提高了离合器的工作性能与稳定性。  相似文献   

9.
针对离合器接合过程中,压盘滑摩温度过高发生的烧蚀、热变形现象,利用abaqus仿真软件建立了三维有限元分析模型,结合压盘的实际工作状况采用直接耦合法进行热结构耦合仿真。得到了压盘的温度场与应力场,并研究了滑摩转速、压力和压盘厚度对压盘温度场及应力场的影响,同时针对翘曲变形,通过在滑摩面增加内锥度对压盘结构进行了优化。结果表明:高转速差会增大压盘滑摩温度与应力,压盘摩擦接触区域向内径移动,翘曲变形更加严重;压力的增大同样会增大滑摩温度与应力,但对摩擦接触的影响较小;压盘厚度增大能增加压盘的热容量,同时也会使温度与应力更加集中;增加压盘内锥度能显著改善压盘滑摩面的温度与应力分布,最高值分别下降了11.8%、5.4%,摩擦副有效接触面积增加,提高了离合器的工作性能与稳定性。  相似文献   

10.
为改善滑摩工况下湿式离合器油路冷却效果,考虑气液两相混合效应的影响,对离合器接合过程中油路的散热特性进行数值模拟.基于κ-ε两层湍流模型和欧拉方法中VOF(volume of fluent model)模型,采用STAR-CCM+软件建立含径向槽的离合器内油路模型,进行稳态计算,研究了入口流量及相对转速对摩擦副流域温度场的影响规律.改变出油孔的布置形式,研究其对摩擦副片间流体油液占比的影响.结果表明:入口流量的增加主要改善滑摩面的热传递情况;转速差的提高不利于摩擦片壁面热传递;出油孔采用中间分布的形式更利于摩擦片外径处的油液占比.另外,通过正交法建立多因素正交仿真方案计算得到各因素影响程度的主次关系,以及给定条件下各个因素的最佳水平搭配.  相似文献   

11.
建立了压力扰动与摩擦元件固连的反对称模态热弹性不稳定模型,应用该模型计算得到了判断摩擦系统热弹性不稳定性的临界速度,分析了弹性模量、泊松比等材料参数对摩擦系统热弹性稳定性的影响,并与Yi Yun-bo和赵家昕的有限元模型进行了对比分析.结果表明,变形摩擦元件对换挡过程影响较大,对蠕行工况影响较小.三种常用摩擦片中,纸基摩擦片TEI临界速度最高,热弹性稳定性最优,石棉摩擦片次之,铜基摩擦片TEI临界速度最小,热弹性稳定性最差;摩擦系统TEI临界速度随对偶钢片比热、导热系数和摩擦片热膨胀系数的增加而增加;随对偶钢片和摩擦钢片弹性模量与泊松比的增加而减小.对偶钢片材料参数不变的前提下,减小摩擦材料比热、泊松比、导热系数和弹性模量,同时增大热膨胀系数可提高摩擦系统的TEI临界速度、提高系统热弹性稳定性.   相似文献   

12.
液黏离合器摩擦副热屈曲特性仿真分析   总被引:1,自引:1,他引:0  
为了研究液黏离合器摩擦副软启动过程中的热屈曲变形,建立了对偶钢片轴对称热传导模型和热屈曲模型,获得了温度场的分布规律,通过有限元法求解了对偶钢片的屈曲变形模态及临界屈曲温度,并分析了约束条件对热屈曲特性的影响。结果表明:软启动结束时对偶钢片温度及径向温差均达到最大值,温度沿径向方向先上升后下降,厚度方向不存在温度梯度;第一阶屈曲模态具有最低的临界屈曲温度,为锥形变形,轴向位移沿半径方向呈线性分布;约束条件能够改变钢片的屈曲模态以及降低临界屈曲温度,为避免液黏离合器摩擦副发生热变形和热失效提供一定的理论依据。  相似文献   

13.
摩擦副表面的局部高温区会引起车辆离合器失效,基于热弹性不稳定性(TEI)理论,通过理论建模与分析的方法,得到系统稳定性的判断标准:临界速度及其变化规律,以及系统扰动的迁移速度. 通过对摩擦片与钢片的Peclet数分析,发现局部向于出现在对偶钢片. 通过对比临界速度,发现钢片呈现反对称变形. 采用较小弹性模量或者较大导热系数的摩擦材料,有助于提高系统稳定性,摩擦材料的热膨胀系数对稳定性影响较小.   相似文献   

14.
针对机械传动湿式摩擦副热负荷异常导致的元件变形失效问题,基于弹性流体混合润滑理论,增加考虑粗糙界面弹塑性变形带来的影响,建立湿式摩擦副混合润滑热力学模型,并通过摩擦磨损试验机验证其正确性.基于粗糙接触面积、局部压强分布和局部温度分布的仿真结果,分析一定工况下的湿式摩擦副界面状态变化规律,探究接触面压和滑动速率对温度场细观分布的影响.结果表明:随着面压的提升,粗糙接触面积和局部压强逐渐升高,最高温度与平均温度的差距拉大,说明了压力提升可以激化界面承压分配的两极分化;随着滑摩速度的提升,粗糙接触面积和局部压强逐渐下降,界面最高温度先迅速升高后又明显下降,极值出现在0.1 m/s~1.0 m/s区间内.  相似文献   

15.
为评估车辆蠕行性能,对搭载干式离合器的车辆在长时间蠕行过程中离合器摩擦转矩、车速失稳比例进行了研究,并通过销—盘试验分析了干式离合器长时间滑摩过程中离合器摩擦副摩擦系数与摩擦副温度、压紧力、滑摩速差的关系。结果表明,在摩擦副温度低于195℃时,铜基粉末冶金材料与65Mn合金组成的摩擦副摩擦系数随摩擦片温度升高而增大;摩擦副温度在195~270℃时,摩擦系数随温度升高而减小;温度超过270℃后,摩擦系数又随温度升高增大。同时,摩擦系数随着滑摩速差增大而增大,随着压紧力增大而减小。由所建立的车辆传动系统模型探讨了车辆在长时间蠕行过程中摩擦副摩擦系数发生变化、离合器摩擦转矩失稳、车速发生波动的规律。在蠕行时间足够长的情况下,车速变化比例随着坡度增大而增大,在17.4°坡上,车速变化比例达到100%;在4.8°、11.5°、17.4°坡上车速变化比例不超过30%的最大蠕行时间分别为96.41 s,32.01 s,6.98 s。  相似文献   

16.
以某车辆的湿式换挡离合器为研究对象,分析多参数耦合下湿式换挡离合器的滑摩特性.基于多体动力学和Hertz接触理论,在ADAMS软件中建立和验证离合器动态分析模型,仿真研究接合油压、摩擦副主、从动件初始转速差、摩擦因数,以及摩擦片刚度等因素对湿式换挡离合器滑摩特性的影响规律.结果表明:适当提高接合油压,增大摩擦因数、摩擦片刚度和摩擦副主、从动件初始转速差,可以有效改善湿式换挡离合器滑摩特性.  相似文献   

17.
湿式离合器摩擦元件摩擦温升状态与车辆性能息息相关.首先考虑沟槽冷却、接触面局部散热和摩擦因数实时变化,引入了副间等效对流换热系数和等效增益系数,优化了温度场数值模型.通过有限差分法进行求解,并试验验证了有效性,比原模型具有更高的准确性.在滑摩稳定期,应用滑摩温度场优化模型分析了转速、油压对温度场的影响规律.用试验方法研究了润滑流量对滑摩温升特性的影响规律,并测得了变形失效过程的温升特性变化.   相似文献   

18.
为了探讨离合器摩擦副材料在高温下的摩擦磨损机制,采用30CrSiMoVM钢作为与铜基粉末冶金摩擦片配对使用的对偶钢片,在MMU-10G高温端面摩擦磨损试验机上,研究30CrSiMoVM钢和摩擦片组成的摩擦副在室温到600℃之间的摩擦磨损性能。研究结果表明:随着温度升高,材料的强度逐渐降低,摩擦界面氧化膜不断形成与脱落,使摩擦副摩擦因数和磨损量总体趋势逐渐增大。在温度为300~500℃时,摩擦副摩擦因数和磨损量均平稳增大,表明摩擦副材料在此温度段摩擦磨损性能较稳定,磨损机制表现为磨粒磨损、氧化磨损和疲劳磨损;在600℃时,摩擦副材料表层软化,摩擦片摩擦因数和磨损量急剧增大,对偶钢片因表层黏着磨损严重,相对磨损量较小,磨损机制表现为黏着磨损、氧化磨损和疲劳磨损。  相似文献   

19.
为了预测液黏离合器的温度场分布及热负荷特性,通过数值模拟研究求得摩擦副散热面的对流换热系数。应用计算流体动力学软件CFX建立了摩擦副流固耦合有限元模型,获得了摩擦副的温度场分布,综合考虑换热表面形状、摩擦片转速、油液流速和入口压力、流体物理性质等因素,揭示了各因素与对流换热系数之间的内在联系。结果表明:摩擦副温度从内径到外径逐渐升高,菱形区域中心温度比四周高。摩擦片转速越大对流换热系数越大;油液黏度越小,入口压力越大,对流换热系数越大。可见,油液流速对换热系数的影响最为显著;摩擦片转速、油液的入口压力和黏度会改变流速及流体的运动状态,从而影响对流换热系数。  相似文献   

20.
为研究电弧位置及能量对弓网系统接触线温度的影响,利用COMSOLMultiphysics软件建立了弓网系统摩擦副温度场仿真模型,通过实验验证了模型的有效性.利用弓网电弧实验数据对高速、强电流条件下的电弧能量进行预测,并将预测结果应用到温度场仿真计算.研究结果表明:电弧能量及位置不同,对接触面温升影响很大.电弧位置对温度的影响有时大于电弧能量对温度的影响.淋雨环境下电弧燃弧时间短,燃弧个数更多,导致接触线最高温度比无雨时大,对接触面侵蚀更严重.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号