首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human β(2) adrenergic receptor (β(2)AR) as a guide, we designed a β(2)AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent β(2)AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound β(2)AR-T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method, and determined its structure at 3.5?? resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30?μs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.  相似文献   

2.
From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca(2+) concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.  相似文献   

3.
4.
Molecular characterization of the melanin-concentrating-hormone receptor.   总被引:16,自引:0,他引:16  
Y Saito  H P Nothacker  Z Wang  S H Lin  F Leslie  O Civelli 《Nature》1999,400(6741):265-269
Orphan G-protein-coupled receptors (GPCRs) are cloned proteins with structural characteristics common to the GPCRs but that bind unidentified ligands. Orphan GPCRs have been used as targets to identify novel transmitter molecules. Here we describe the isolation from brain extracts and the characterization of the natural ligand of a particular orphan GPCR (SLC-1) that is sequentially homologous to the somatostatin receptors. We show that the natural ligand of this receptor is the neuropeptide melanin-concentrating hormone (MCH). MCH is a cyclic peptide that regulates a variety of functions in the mammalian brain, in particular feeding behaviour. We demonstrate that nanomolar concentrations of MCH strongly activate SLC-1-related pathways through G(alpha)i and/or G(alpha)q proteins. We have analysed the tissue localization of the MCH receptor and find that it is expressed in several brain regions, in particular those involved in olfactory learning and reinforcement mechanisms, indicating that therapies targeting the MCH receptor should act on the neuronal regulation of food consumption.  相似文献   

5.
Although activated human T and B lymphocytes express both high-affinity and low-affinity membrane receptors for interleukin-2 (IL-2), the structural features that distinguish these receptors have remained unresolved. The high-affinity receptors appear to mediate IL-2 induced T cell growth and internalization of IL-2, whereas no function has yet been ascribed to the low-affinity receptors. The Tac antigen is an IL-2 binding protein of relative molecular mass 55,000 (Mr 55K) that participates in the formation of both high- and low-affinity receptors. But Tac complementary DNA transfection and membrane fusion studies have suggested that additional T-cell components are required to produce high-affinity IL-2 receptors. In this study, we report the identification of a second human IL-2 binding protein that (1) has an Mr of approximately 70K, (2) lacks reactivity with the anti-Tac antibody, (3) binds IL-2 with intermediate affinity and (4) is present on the surface of resting T cells, large granular lymphocytes (natural killer cells), and certain T and B cell lines in the absence of the Tac antigen. Chemical crosslinking of 125I-labelled IL-2 bound to high-affinity IL-2 receptors produces labelling of both the p70 protein and the Tac antigen and the anti-Tac antibody blocks the crosslink detection of both of these proteins. Expression of Tac cDNA in a T cell line expressing the p70 protein, but lacking both Tac and high-affinity receptors, results in the reconstitution of high-affinity IL-2 receptors in these cells. Together, these findings suggest that the high-affinity human IL-2 receptor may be a membrane complex composed of at least the p70 protein and Tac antigen.  相似文献   

6.
G-protein-coupled receptor heterodimerization modulates receptor function.   总被引:29,自引:0,他引:29  
B A Jordan  L A Devi 《Nature》1999,399(6737):697-700
The opioid system modulates several physiological processes, including analgesia, the stress response, the immune response and neuroendocrine function. Pharmacological and molecular cloning studies have identified three opioid-receptor types, delta, kappa and mu, that mediate these diverse effects. Little is known about the ability of the receptors to interact to form new functional structures, the simplest of which would be a dimer. Structural and biochemical studies show that other G-protein-coupled receptors (GPCRs) interact to form homodimers. Moreover, two non-functional receptors heterodimerize to form a functional receptor, suggesting that dimerization is crucial for receptor function. However, heterodimerization between two fully functional receptors has not been documented. Here we provide biochemical and pharmacological evidence for the heterodimerization of two fully functional opioid receptors, kappa and delta. This results in a new receptor that exhibits ligand binding and functional properties that are distinct from those of either receptor. Furthermore, the kappa-delta heterodimer synergistically binds highly selective agonists and potentiates signal transduction. Thus, heterodimerization of these GPCRs represents a novel mechanism that modulates their function.  相似文献   

7.
T Michel  B B Hoffman  R J Lefkowitz 《Nature》1980,288(5792):709-711
Many hormones interact with receptors which stimulate the enzyme adenylate cyclase. Less well characterized ar those receptors which mediate an inhibition of adenylate cyclase activity. However, guanine nucleotides are clearly important in the regulation of both stimulatory and inhibitory receptors. Monovalent cations, notably Na+, regulate many inhibitory receptor systems but apparently not stimulatory receptors. We investigate here the effects of Na+ and guanine nucleotides on the adenylate cyclase-coupled inhibitory alpha 2-adrenergic receptor of the rabbit platelet. Computer modelling of adrenaline competition curves with 3H-dihydroergocryptine (3H-DHE) indicates that adrenaline induces two distinct affinity states of the alpha 2 receptor--one of higher (alpha 2H) and the other of lower (alpha 2L) affinity. Guanyl-5'-yl-imidodiphosphate (Gpp(NH)p) seems to reduce adrenaline affinity to converting the high-affinity state into the low-affinity form of the receptor. In contrast, Na+ reduces adrenaline affinity at both the high- and low-affinity states of the alpha 2 receptor while preserving receptor heterogeneity. Thus, guanine nucleotides and Na+ differ in the manner by which each reduces agonist affinity for the alpha 2-adrenergic receptor.  相似文献   

8.
F Ango  L Prézeau  T Muller  J C Tu  B Xiao  P F Worley  J P Pin  J Bockaert  L Fagni 《Nature》2001,411(6840):962-965
G-protein-coupled receptors (GPCRs) transduce signals from extracellular transmitters to the inside of the cell by activating G proteins. Mutation and overexpression of these receptors have revealed that they can reach their active state even in the absence of agonist, as a result of a natural shift in the equilibrium between their inactive and active conformations. Such agonist-independent (constitutive) activity has been observed for the glutamate GPCRs (the metabotropic glutamate receptors mGluR1a and mGluR5) when they are overexpressed in heterologous cells. Here we show that in neurons, the constitutive activity of these receptors is controlled by Homer proteins, which bind directly to the receptors' carboxy-terminal intracellular domains. Disruption of this interaction by mutagenesis or antisense strategies, or expression of endogenous Homer1a (H1a), induces constitutive activity in mGluR1a or mGluR5. Our results show that these glutamate GPCRs can be directly activated by intracellular proteins as well as by agonists.  相似文献   

9.
Dopamine receptors belong to a superfamily of receptors that exert their biological effects through guanine nucleotide-binding (G) proteins. Two main dopamine receptor subtypes have been identified, D1 and D2, which differ in their pharmacological and biochemical characteristics. D1 stimulates adenylyl cyclase activity, whereas D2 inhibits it. Both receptors are primary targets for drugs used to treat many psychomotor diseases, including Parkinson's disease and schizophrenia. Whereas the dopamine D1 receptor has been cloned, biochemical and behavioural data indicate that dopamine D1-like receptors exist which either are not linked to adenylyl cyclase or display different pharmacological activities. We report here the cloning of a gene encoding a 477-amino-acid protein with strong homology to the cloned D1 receptor. The receptor, called D5, binds drugs with a pharmacological profile similar to that of the cloned D1 receptor, but displays a 10-fold higher affinity for the endogenous agonist, dopamine. As with D1, the dopamine D5 receptor stimulates adenylyl cyclase activity. Northern blot and in situ hybridization analyses reveal that the receptor is neuron-specific, localized primarily within limbic regions of the brain; no messenger RNA was detected in kidney, liver, heart or parathyroid gland. The existence of a dopamine D1-like receptor with these characteristics had not been predicted and may represent an alternative pathway for dopamine-mediated events and regulation of D2 receptor activity.  相似文献   

10.
Dopaminergic D-3 binding sites are not presynaptic autoreceptors   总被引:1,自引:0,他引:1  
S E Leff  I Creese 《Nature》1983,306(5943):586-589
Postsynaptic dopamine (DA) receptors have been classified biochemically and pharmacologically into two types: D-1 receptors mediate adenylate cyclase stimulation, demonstrating micromolar affinity for DA and butyrophenone antagonists; D-2 receptors mediate adenylate cyclase inhibition, demonstrating nanomolar affinity for DA and butyrophenone antagonists. D-1 receptors are labelled by 3H-thioxanthene antagonists, while D-2 receptors are labelled by both 3H-agonists and all 3H-antagonists. A third class of dopaminergic binding site, termed D-3, represents high-affinity 3H-agonist binding sites demonstrating low, micromolar, affinity for butyrophenones. In the rat striatum, D-3 sites were decreased 50% by 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal DA pathway, suggesting that such D-3 binding labels presynaptic DA autoreceptors on nigrostriatal terminals. However, nigrostriatal denervation produces a concomitant depletion of striatal DA. Here we demonstrate that a reserpine-induced depletion of DA produces a decrease in D-3 binding comparable to that seen with nigrostriatal denervation, independent of presynaptic terminal degeneration. This loss in binding, or that caused by 6-OHDA lesions, is recovered by preincubating the striatal membranes with DA or with the supernatant from control striatal membrane preparations. We therefore suggest that the loss of D-3 binding following 6-OHDA lesions results from the depletion of endogenous DA rather than the degeneration of terminals and their putatively associated autoreceptors.  相似文献   

11.
J Lechleiter  S Girard  D Clapham  E Peralta 《Nature》1991,350(6318):505-508
Calcium release from intracellular stores is a point of convergence for a variety of receptors involved in cell signaling. Consequently, the mechanism(s) by which cells differentiate between individual receptor signals is central to transmembrane communication. There are significant differences in timing and magnitude of Ca2+ release stimulated by the m2 and m3 muscarinic acetylcholine receptors. The m2 receptors couple to a pertussis toxin-sensitive G protein to activate phosphatidyl inositol hydrolysis weakly and to stimulate small, delayed and oscillatory chloride currents. In contrast, m3 receptors potently activate phosphatidyl inositol hydrolysis and stimulate large, rapid and transient chloride currents by a pertussis toxin-insensitive G protein pathway. Using confocal microscopy, we now show that the m2- and m3-coupled Ca2+ release pathways can also be spatially distinguished. At submaximal acetylcholine concentrations, both receptors stimulated pulses of Ca2+ release from discrete foci in random, periodic and frequently bursting patterns of activity. But maximal stimulation of m2 receptors increased the number of focal release sites, whereas m3 receptors invariably evoked a Ca2+ wave propagating rapidly just beneath the plasma membrane surface. Analysis of pertussis toxin sensitivity and hybrid m2-m3 muscarinic acetylcholine receptors confirmed that these Ca2+ release patterns represent distinct cell signalling pathways.  相似文献   

12.
Two multigene superfamilies, named V1R and V2R, encoding seven-transmembrane-domain G-protein coupled receptors (GPCRs) have been identified as pheromone receptors in mammals. Three V2R gene families have been described in mouse and rat. Here we screened the updated mouse genome se- quence database and finally retrieved 63 putative functional V2R genes including three newly identified genes which formed a new additional family. We described the genomic organization of these genes and also characterized the conservation of mouse V2R protein sequences. These genomic and se- quence information we described are useful as part of the evidence to speculate the functional domain of V2Rs and should give aid to the functionality study in the future.  相似文献   

13.
Phot1 and phot2 mediate blue light regulation of stomatal opening.   总被引:36,自引:0,他引:36  
T Kinoshita  M Doi  N Suetsugu  T Kagawa  M Wada  K Shimazaki 《Nature》2001,414(6864):656-660
The stomatal pores of higher plants allow for gaseous exchange into and out of leaves. Situated in the epidermis, they are surrounded by a pair of guard cells which control their opening in response to many environmental stimuli, including blue light. Opening of the pores is mediated by K(+) accumulation in guard cells through a K(+) channel and driven by an inside-negative electrical potential. Blue light causes phosphorylation and activation of the plasma membrane H(+)-ATPase that creates this potential. Thus far, no blue light receptor mediating stomatal opening has been identified, although the carotenoid, zeaxanthin, has been proposed. Arabidopsis mutants deficient in specific blue-light-mediated responses have identified four blue light receptors, cryptochrome 1 (cry1), cryptochrome 2 (cry2), phot1 and phot2. Here we show that in a double mutant of phot1 and phot2 stomata do not respond to blue light although single mutants are phenotypically normal. These results demonstrate that phot1 and phot2 act redundantly as blue light receptors mediating stomatal opening.  相似文献   

14.
O P Hamill  J Bormann  B Sakmann 《Nature》1983,305(5937):805-808
In the mammalian central nervous system, glycine and gamma-aminobutyric acid (GABA) bind to specific and distinct receptors and cause an increase in membrane conductance to CI- (refs 5-7). Neurones in various regions of the nervous system show differential sensitivity to glycine and GABA; thus GABA and glycine receptors are spatially distinct from one another. However, on the basis of desensitization experiments on spinal cord neurones, it was suggested that the receptors for glycine and GABA may share the same CI- channel. We now report that in small membrane patches, isolated from the soma of spinal neurones, both receptor channels display several (multiple) conductance states. Two of the states are common to both receptor channels. However, the most frequently observed 'main conductance states' of the GABA and glycine receptor channels are different. Both channels display the same anion selectivity. We propose that one class of multistate CI- channel is coupled to either GABA or glycine receptors. The main conductance state adopted by this channel is determined by the receptor to which it is coupled.  相似文献   

15.
The sense of taste provides animals with valuable information about the nature and quality of food. Bitter taste detection functions as an important sensory input to warn against the ingestion of toxic and noxious substances. T2Rs are a family of approximately 30 highly divergent G-protein-coupled receptors (GPCRs) that are selectively expressed in the tongue and palate epithelium and are implicated in bitter taste sensing. Here we demonstrate, using a combination of genetic, behavioural and physiological studies, that T2R receptors are necessary and sufficient for the detection and perception of bitter compounds, and show that differences in T2Rs between species (human and mouse) can determine the selectivity of bitter taste responses. In addition, we show that mice engineered to express a bitter taste receptor in 'sweet cells' become strongly attracted to its cognate bitter tastants, whereas expression of the same receptor (or even a novel GPCR) in T2R-expressing cells resulted in mice that are averse to the respective compounds. Together these results illustrate the fundamental principle of bitter taste coding at the periphery: dedicated cells act as broadly tuned bitter sensors that are wired to mediate behavioural aversion.  相似文献   

16.
An amino-acid taste receptor   总被引:52,自引:0,他引:52  
Nelson G  Chandrashekar J  Hoon MA  Feng L  Zhao G  Ryba NJ  Zuker CS 《Nature》2002,416(6877):199-202
The sense of taste provides animals with valuable information about the nature and quality of food. Mammals can recognize and respond to a diverse repertoire of chemical entities, including sugars, salts, acids and a wide range of toxic substances. Several amino acids taste sweet or delicious (umami) to humans, and are attractive to rodents and other animals. This is noteworthy because L-amino acids function as the building blocks of proteins, as biosynthetic precursors of many biologically relevant small molecules, and as metabolic fuel. Thus, having a taste pathway dedicated to their detection probably had significant evolutionary implications. Here we identify and characterize a mammalian amino-acid taste receptor. This receptor, T1R1+3, is a heteromer of the taste-specific T1R1 and T1R3 G-protein-coupled receptors. We demonstrate that T1R1 and T1R3 combine to function as a broadly tuned L-amino-acid sensor responding to most of the 20 standard amino acids, but not to their D-enantiomers or other compounds. We also show that sequence differences in T1R receptors within and between species (human and mouse) can significantly influence the selectivity and specificity of taste responses.  相似文献   

17.
Nerve growth factor (NGF) interacts with two different low-affinity receptors that can be distinguished by affinity crosslinking. Reconstitution experiments by membrane fusion and transient transfection into heterologous cells indicate that high-affinity NGF binding requires coexpression and binding to both the low-affinity NGF receptor and the tyrosine kinase trk gene product. These studies reveal a new growth factor receptor-mediated mechanism of cellular differentiation involving trk and the low-affinity NGF receptor.  相似文献   

18.
Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G(q/11)-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G(i/o)-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.  相似文献   

19.
Selective antagonists of benzodiazepines   总被引:56,自引:0,他引:56  
Benzodiazepines produce most, if not all, of their numerous effects on the central nervous system (CNS) primarily by increasing the function of those chemical synapses that use gamma-amino butyric acid (GABA) as transmitter. This specific enhancing effect on GABAergic synaptic inhibition is initiated by the interaction of benzodiazepines with membrane proteins of certain central neurones, to which drugs of this chemical class bind with high affinity and specificity. The molecular processes triggered by the interaction of these drugs with central benzodiazepine receptors, and which result in facilitation of GABAergic transmission, are still incompletely understood. Theoretically, benzodiazepines could mimic the effect of hypothetical endogenous ligands for the benzodiazepine receptors, although there is no convincing evidence for their existence; in vitro studies indicate that benzodiazepines might compete with a modulatory peptide which is present in the supramolecular assembly formed by GABA receptor, chloride ionophore and benzodiazepine receptor and which reduces the affinity of the GABA receptor for its physiological ligand. The mechanisms of action of benzodiazepines at the molecular level are likely to be better understood following our recent discovery of benzodiazepine derivatives, whose unique pharmacological activity is to prevent or abolish in a highly selective manner at the receptor level all the characteristic centrally mediated effects of active benzodiazepines. Here, we describe the main properties of a representative of this novel class of specific benzodiazepine antagonists.  相似文献   

20.
The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号