首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为确定不同反应条件对亚甲基蓝去除率的影响,采用共沉淀法制备了磁性Fe_3O_4纳米粉体催化剂,并将Fe_3O_4纳米粉体负载到多孔性的硅藻土上,即Fe_3O_4@硅藻土(Diatomite-Fe_3O_4,D-Fe_3O_4),采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对催化剂粉体的物相和形貌进行了表征。结果表明,Fe_3O_4纳米粉体均匀的负载在多孔硅藻土上,D-Fe_3O_4对亚甲基蓝的去除率可达到94.2%,与相同质量的纯Fe_3O_4纳米粉体相比,去除率提高了31.6个百分点,并且可以实现催化剂的回收利用。  相似文献   

2.
通过对金属冠醚[Fe_6~Ⅲ(C_(12)H_9N_2O_5)_6(H_2O)_2(CH_3OH)_4]和[Fe_6(C_(12)H_8N_2O_5Cl)_6(H_2O)_4(CH_3OH)_2]反应体系的分析,认为水杨酸基双酰肼羧酸的酯化是一种新型的由金属冠醚自身进行的内部酯化反应,并将这种酯化反应定义为内部自催化反应.对于18-MC-6金属冠醚[Fe_6(C_(12)H_9N_2O_5)_6(H_2O)_2(CH_3OH)_4],在其内部自催化反应中,反应物为[Fe_6(C_(10)H_6N_2O_3-COOH)_6(H_2O)_2(CH_3OH)_4],其中主要配体(Z)-H_4shcpa具有羧酸基团(—COOH).作为酯化反应的功能基团—COOH,通过与铁离子的配位,再与具有活性的配位甲醇结合,生成酯化合物(Z)—H_3mshcp,最终得到内部自催化反应产物[Fe_6~Ⅲ(C_(10)H_6N_2O_3—COOCH_3)_6(H_2O)_2(CH_3OH)_4].其中,内部自催化反应的催化中心应是铁离子.  相似文献   

3.
本文讨论Fe_3O_4磁性液体的制备问题,给出了一种制备Fe_3O_4粒子的超声波振动与搅拌的方法,确定了Fe_3O_4粒子表面活化的工艺及用NaOH提高磁性液体稳定性的方法,并对实验结果及现象进行了分析.  相似文献   

4.
为丰富Fe_3O_4磁性纳米粒子在生物医学领域的应用,通过共沉淀法制备Fe_3O_4纳米粒子,经柠檬酸三钠修饰后,采用改进的Stber法成功在Fe_3O_4纳米粒子表面包覆上SiO_2,制备出核壳结构Fe_3O_4@SiO_2纳米粒子。使用扫描式电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、振动样品磁强计对制备的Fe_3O_4@SiO_2纳米粒子进行表征。结果表明:制备的Fe_3O_4@SiO_2纳米粒子较Fe_3O_4纳米粒子分散性有明显的提高,平均粒径在65 nm左右,饱和比磁化强度为10.26 A·m^2/kg,仍具有良好的超顺磁性。  相似文献   

5.
以聚乙二醇(PEG)为修饰剂,采用共沉淀法制备了磁性Fe_3O_4/PEG。用X-射线衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)对Fe_3O_4/PEG进行表征。粒子中的Fe_3O_4为立方晶系,加入PEG6000和PEG20000能有效分散Fe_3O_4,避免颗粒团聚。考察了Fe_3O_4/PEG对水合肼还原硝基苯制备苯胺的催化活性,加入PEG6000和PEG20000作为分散剂制备的Fe_3O_4/PEG具有较高的活性和较好的重复性。1.23 g(10 mmol)硝基苯,0.1 g Fe_3O_4/PEG6000(或Fe_3O_4/PEG20000)催化剂,2.0 g水合肼在乙醇中回流反应1 h,苯胺收率接近100%,催化剂重复使用9次活性基本不变。  相似文献   

6.
为了研究魔芋葡甘聚糖/纳米Fe_3O_4_静电纺丝膜,运用流变仪分析纳米Fe_3O_4对KGM溶胶流变性能的影响,以期为制备复合的纺丝液的浓度和配比提供了指导。结果表明:KGM/纳米Fe_3O_4复合溶胶是一种假塑性流体;复合溶胶的粘度、线性粘弹区域范畴、屈服应力值、模量等四个指标均与纳米Fe_3O_4掺杂比的掺杂比呈正比关系,从剪切性质分析其体系纳米Fe_3O_4质量浓度不应超过1.2%。通过频率扫描分析,纳米Fe_3O_4与KGM之间存在相互作用,随着纳米Fe_3O_4粒子含量的增加使得与KGM作用增加,从而使体系形成稳定网络结构,使复合溶胶的稳定性更高,因此将魔芋葡甘聚糖/纳米Fe_3O_4制备静电纺丝膜具有一定可行性。  相似文献   

7.
采用热分析仪、滴管炉等研究了Fe_2O_3对煤焦热解过程的催化作用,借助XRD分析了Fe_2O_3在不同反应温度下的转变产物。结果表明,添加Fe_2O_3后煤焦热解吸热量明显下降,生成烟气中CO、CO_2含量显著上升;Fe_2O_3在1000℃和1100℃时的主要转化产物分别为Fe_3O_4和FeO,在1200℃时转变为Fe_3O_4、FeO和Fe。  相似文献   

8.
《河南科学》2017,(11):1749-1754
以γ-Al_2O_3颗粒和蜂窝陶瓷为载体,采用硝酸盐浸渍法制备了负载Fe_2O_3的两种催化剂,Fe_2O_3/γ-Al_2O_3催化剂和Fe_2O_3/蜂窝陶瓷催化剂.分别测试了蜂窝陶瓷、Fe_2O_3/蜂窝陶瓷催化剂和γ-Al_2O_3、Fe_2O_3/γ-Al_2O_3催化剂的比表面积;以丙烯酸废水中的丙烯酸作为目标污染物,分别对比了单独臭氧氧化、Fe_2O_3/γ-Al_2O_3催化剂和Fe_2O_3/蜂窝陶瓷催化对丙烯酸的降解效果.结果表明,Fe_2O_3/蜂窝陶瓷和Fe_2O_3/γ-Al_2O_3催化剂对丙烯酸的COD的去除率分别为93.4%和83.1%,比单独臭氧氧化时的COD去除率69.9%有大幅度的提高;Fe_2O_3/蜂窝陶瓷和Fe_2O_3/γ-Al_2O_3催化剂对丙烯酸的TOC的去除率分别为82.7%和75.2%,与单独臭氧氧化时TOC去除率相比,分别提高了31%和24%.  相似文献   

9.
采用水热法,以柠檬酸(Cit)为配位剂,使之与溶液中的亚铁离子形成配合物,通过改变水热反应时间合成出具有不同形貌和高饱和磁化强度的Fe_3O_4磁性粉体,以研究水热反应时间对合成Fe_3O_4磁性颗粒形貌及其磁性能的影响,从而确定最佳合成工艺.XRD衍射谱图分析结果表明柠檬酸配位体系水热合成产物为具有高纯度的面心立方结构的Fe_3O_4粉末;SEM图分析结果表明,随着反应时间的增加,Fe_3O_4的形状由正八面体消失,并先择优取向横向生长成纳米片结构,随后逐渐趋向于纵向生长,使片状生长为块状,最终生长为不规则的多面体结构.FT-IR分析结果表明,在柠檬酸体系合成Fe_3O_4的过程中,柠檬酸分子在合成的Fe_3O_4颗粒表面以配位状态存在.磁滞曲线分析结果表明,合成的Fe_3O_4样品具有超顺磁性,且当水热反应时间为14 h时,合成的Fe_3O_4粉体在300 K条件下饱和磁化强度高达97 emu/g,相比目前文献报道的最高的块状结构Fe_3O_4颗粒饱和磁化强度提高7.78%.  相似文献   

10.
实验研究了不同体积分数Fe_3O_4/Water纳米流体在磁场作用下的水平小圆管内的湍流流动对流换热特性,测量了体积分数为3%的Fe_3O_4/Water纳米流体的沿程压力降并计算了其能量比率,探讨了在磁场作用下纳米流体强化对流换热的机制.实验结果表明:Fe_3O_4/Water纳米流体的对流换热系数随着体积分数的增加而升高,其平均值最大提高了4.3%;在与流动方向垂直的匀强磁场作用下,当磁场强度为23.809和39.682 kA/m时,纳米流体的换热系数几乎没有提高,当磁场强度为63.492 A/m时,换热系数有所提高,其平均值最大提高了3%;Fe_3O_4/Water纳米流体的沿程压力降相对于基液去离子水增加了50%,外加磁场使其进一步增大,并随着磁场强度的增加而增大,当磁场强度为63.492 A/m时增加了11.3%;Fe_3O_4/Water纳米流体相对于基液去离子水的能量比率计算值小于1,说明添加Fe_3O_4纳米粒子没有达到节能的效果.  相似文献   

11.
FeO—Fe_2O_3—SiO_2渣系的作用浓度计算模型   总被引:1,自引:0,他引:1  
根据共存理论的基本观点,从FeOn—SiO_2渣系的相图和粘度数据及FeOn—Fe_2O_3相图确定了本渣系的结构单元为Fe~(2+),O~(2-)简单离子和SiO_2,Fe_2O_3,Fe_3O_4及Fe_2SiO_4分子。在此基础上利用Fe_2SiO_4和Fe_3O_4的标准生成自由能数据推导了计算Feo—Fe_2O_3—SiO_2渣系各组元作用浓度的模型。 计算的NFe_tO与实测的αFe_tO符合,且NFe_tO、NSiO_2、NFe_2SiO_4和炉渣总质点数∑n随B_1=∑nFeO/∑nSiO_2而改变,而NFe_2O_3和NFe_3O_4随B_2=∑nFeO/∑nFe_2O_3而改变,表明Fe_2SiO_4和Fe_3O_4的混合是理想的,两者间的相互影响是不大的。  相似文献   

12.
以三氯化铁和醋酸钠为原料,采用水热法制备Fe_3O_4粉体,对比实心Fe_3O_4粉体在吸波性能上具备的优势。通过X射线衍射(XRD)分析Fe_3O_4粉体的物相结构;采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)观测Fe_3O_4粉体的尺寸及形貌;使用矢量网络分析仪测试了同轴样品的电磁参数来计算泡状Fe_3O_4粉体的微波吸波性能。结果表明,制备的Fe_3O_4粉体为泡状结构,密度小于实心Fe_3O_4粉体,且介电常数实部明显升高。在0.5~18.0GHz频段,当厚度大于4mm时,其吸波性能相比实心Fe_3O_4粉体有一定优势。  相似文献   

13.
为了改善g-C_3N_4比表面积低等缺点,通过高温热聚合法制备了三维(3D)多孔g-C_3N_4,并通过与Fe_2O_3复合得到Fe_2O_3/g-C_3N_4催化剂,提高其可见光响应.Fe_2O_3/g-C_3N_4在g-C_3N_4含量为900 mg、罗丹明B(Rhodamine B,RhB)浓度为20 mg·L~(–1)、H_2O_2为15 mmol时脱色速率最快,30 min可达到100%.同时Fe_2O_3/g-C_3N_4对其他有机物也表现出较好的降解性能,在30 min内对甲基橙(Methyl orange,MO)、四环素(Tetracycline,TC)的降解率分别达到80%和90%.通过活性基团捕获实验探究Fe_2O_3/g-C_3N_4的光催化降解机制,实验结果表明h+和·OH在Fe_2O_3/g-C_3N_4光催化降解有机物过程中起到主要作用.  相似文献   

14.
采用化学共沉淀法制备Fe_3O_4纳米粒子(MNPs),对Fe_3O_4MNPs进行无机材料SiO_2包被和氨基化,依次得到Fe_3O_4@SiO_2和Fe_3O_4@SiO_2-NH_2,再对Fe_3O_4@SiO_2-NH_2和醋酸氟孕酮(FGA)进行PEG化,分别得到Fe_3O_4@SiO_2-NH_2-PEG和PEG-FGA产物.分别以20 mg∶20 mg、20 mg∶10 mg的比例进行Fe_3O_4@SiO_2-NH_2-PEG和PEG-FGA的装载研究.最后利用紫外-可见分光光度法对样品装载、释放的结果进行吸光度测定,通过FGA的浓度标准曲线,计算样品的释放浓度.结果表现为在释放过程中,从4-20 d数据结果看,20 mg∶10 mg的样品要好于20 mg∶20 mg的样品,所以确定20 mg∶10 mg用作药物释放研究的浓度.  相似文献   

15.
四氧化三铁(Fe_3O_4)作为一种重要的磁性材料,由于其优良的物理和化学性质,被广泛应用于生物、磁流体、医学等多个领域.Fe_3O_4@Au复合材料的引入不仅可以克服铁氧化物稳定性差、易团聚等缺点,并且使该材料具备了良好的生物相容性.本文制备了尺寸均一的亚铁磁性立方体形状的Fe_3O_4纳米颗粒,并以PEI-DTC作为粘合层,成功将Au粒子均匀包覆在Fe_3O_4表面.利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、紫外分光光度计(UV-vis)、SQUID-VSM磁性测量系统研究了包覆Au纳米粒子对Fe_3O_4结构和磁性的影响.  相似文献   

16.
以Fe_3O_4磁性纳米粒子、Cu(NO3)2·3H2O和均苯三甲酸为主要原料合成了一种新型磁性MOFs复合材料-Fe_3O_4@HKUST-1,对其进行XPS、SEM、XRD以及FT-IR表征分析,结果显示该复合材料形貌结构是以Fe_3O_4磁性纳米粒子为核,HKUST-1将其包裹在内.以Fe_3O_4@HKUST-1作为吸附剂,研究不同环境条件下(pH、浓度和吸附时间)对铀的吸附影响.在pH为4的条件下,铀在Fe_3O_4@HKUST-1上有较高的吸附量.Fe_3O_4@HKUST-1对U(Ⅵ)的吸附符合二级动力学模型以及Langmuir等温吸附模型.研究结果表明,Fe_3O_4@HKUST-1对水中U(Ⅵ)有着良好的吸附能力,可作为一种高效的铀吸附材料.  相似文献   

17.
提出一种采用共沉淀法制备三维多孔Fe_3O_4纳米花的合成方法,对Fe_3O_4纳米花的自组装演化过程进行了研究.结果发现,尿素浓度是影响Fe_3O_4前驱体形貌的关键因素,通过调节制备条件可以获得具有纳米花形貌的Fe_3O_4纳米颗粒,Fe_3O_4纳米花作为磁性多孔微球具有更高的比表面积.磁性测试结果表明,Fe_3O_4纳米花在室温下具有超顺磁性且具有较高的饱和磁化强度.该材料是一种具有较好应用前景的磁性纳米材料.  相似文献   

18.
以Fe(NO_3)3·9H_2O为铁源,乙二醇为溶剂和还原剂,采用溶剂热法制备了Fe_3O_4磁性纳米颗粒.利用XRD、FT-IR和TEM对其进行了物相和形貌的表征,以4-氯苯酚(4-CP)为目标污染物,评价了其活化H_2O_2的性能.结果表明:制备的Fe_3O_4纳米颗粒近似呈球形,平均粒径约15 nm,能够有效地活化H_2O_2产生·OH并高效降解4-CP.在25℃,Fe_3O_4用量0.3 g·L~(-1),H_2O_2浓度1.6 mmol·L~(-1),初始pH=5.7时,所建立Fe_3O_4-H_2O_2氧化体系能在15 min内完全降解去除0.4 mmol·L~(-1) 4-CP,较相同条件下超声辅助反相共沉淀法制备的Fe_3O_4效果更好.Fe_3O_4活化H_2O_2降解4-CP的机理主要是因为新的溶剂热法可导致Fe_3O_4磁性纳米颗粒表面的富羟基化和配位作用.  相似文献   

19.
研究了热处理过程中α-Fe_2O_3还原、Fe_3O_4氧化机理,考察了还原、氧化条件对γ-Fe_2O_3微观结构及磁性的影响。结果表明,还原温度和还原气空速是影响还原程度的重要参数。当还原温度为380℃、空速为1200h~(-1)时,所获磁粉矫顽力最高。Fe_3O_4烧结为表面扩散控制。Fe_3O_4向γ-Fe_2O_3的相变过程能加速粒子烧结。同时发现,当Fe_3O_4氧化不充分时,立方γ-Fe_2O_3中存在四方γ-Fe_2O_3杂相。  相似文献   

20.
四氧化三铁(Fe_3O_4)是一种重要的铁氧体,由于具备优良的物理化学性质被广泛应用于各个领域.在趋磁细菌内存在的磁小体主要是由20~100 nm的单畴Fe_3O_4和Fe_3S_4组成,通常为立方体和立方八面体形状.制备了尺寸均匀的亚铁磁性立方体形状Fe_3O_4纳米颗粒,利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、SQUID-VSM磁性测量系统研究了保护气氛对Fe_3O_4形貌和磁性的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号