首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
随着生物医学的发展, 科学研究对生物成像技术和成像分辨率的要求越来越高, 纳米技术和材料被越来越多地应用到生物医学领域中来. 在细胞和生物组织的成像分析中, 纳米金由于其特殊的表面等离子共振特性和优良的生物相容性, 常被用作对比剂、靶向载体、增强剂、示踪剂和传感器而广泛应用于生物成像领域中. 我们将课题组的研究方向与目前该领域的研究热点相结合, 从纳米金辅助细胞及细胞内成像和动物活体成像两个方面就纳米金在生物成像、医学诊断等领域中的应用进展进行了阐述.  相似文献   

2.
贺薇  李原芳  谭克俊  黄承志 《科学通报》2007,52(24):2840-2845
利用等离子共振光散射(PRLS)、等离子共振吸收、扫描电子显微镜和动态光散射技术研究了金纳米棒与肝素的相互作用. 结果表明, 在溶液中, 金纳米棒呈分散状态, 具有微弱的等离子共振光散射信号. 但当其与肝素通过静电作用后发生明显的聚集, 产生显著的增强PRLS信号, 信号的增强程度与肝素浓度在一定范围内呈线性关系. 据此建立了基于金纳米棒聚集测定微量肝素的等离子共振光散射分析法. 在60 mmol/L NaCl和pH 5.33的Britton-Robinson (BR)缓冲溶液介质中, 金纳米棒浓度为6.4×10-5 mol/L时, 测得肝素的线性范围为0.02~0.70 μg/mL, 检出限为(3σ ) 8.0 ng/mL. 该方法成功应用于临床肝素钠注射液的测定.  相似文献   

3.
报道了一种新型的荧光及表面增强拉曼散射(SERS)双模式光学成像探针. 该探针以金核银壳纳米棒为SERS增强基底, 其表面标记拉曼分子产生SERS信号. 随后通过层层吸附的方法在标记了拉曼分子的金核银壳纳米棒表面包裹聚合物电解质. 最后在聚合物电解质层上连接异硫氰酸荧光素产生荧光信号. 将探针置入HeLa细胞, 实现了荧光、SERS双模式成像. 该探针具有以下优点: (1) 能产生荧光、SERS两种信号, 实现双模式光学成像; (2) 金核银壳纳米棒具有优异的SERS增强能力, 使得探针进入活细胞后仍能提供高信噪比的SERS信号; (3) 聚合物电解质在形成隔离层避免荧光信号被金属淬灭的同时, 提高了探针的生物兼容性. 这种双模式光学成像探针在药物输运和肿瘤靶向等研究中具有重大的应用前景.  相似文献   

4.
贵金属纳米颗粒的表面等离子共振(SPR)效应的研究已经有近60年的历史,近年来纳米等离子激元用于生物分析传感应用取得了长足的进步.本文系统地阐述了等离子激元的形成原理与单颗粒水平分析检测技术原理,从直接传感、等离子共振能量转移(PRET)、SPR耦合、生物成像与治疗等方面概括介绍了目前利用等离子激元进行生物分析传感、生物成像与诊疗等方面的应用研究.生物传感检测技术在单分子检测、单颗粒成像与分析等领域具有重要的科学意义与应用前景.  相似文献   

5.
金属纳米结构表面等离子体共振的调控和利用   总被引:9,自引:0,他引:9  
李志远  李家方 《科学通报》2011,56(32):2631-2661
金属纳米结构的表面等离子体光学在光催化、纳米集成光子学、光学传感、生物标记、医学成像、太阳能电池, 以及表面增强拉曼光谱等领域有广泛的应用前景, 这些功能和金属纳米结构与光相互作用时产生的表面等离子体共振密切相关. 本文简单回顾国际上该领域过去十来年的一些重要研究进展和当前发展的前沿动态, 重点介绍我们课题组近年来在金属纳米颗粒和纳米结构的表面等离子体光学理论和实验研究上取得的一些成果. 同时还介绍了我们课题组目前在表面等离子体光学研究方面的若干新思路, 包括表面等离子体共振放大、紫外波段光学天线、纳米天线光学双稳态、表面等离子体辅助的量子相互作用等. 通过这些经验和教训的介绍与讨论, 期望能够达到抛砖引玉的目的, 与国内同行来共同探讨表面等离子体光学结构是如何在纳米尺度上实现对光的各种性质的调控和利用的, 并向等离子体光学的未知领域开拓进取.  相似文献   

6.
金纳米管结构的等离子体光子学性质   总被引:1,自引:1,他引:0  
张中月  熊祖洪 《科学通报》2010,55(23):2269-2275
应用离散偶极子近似方法计算了金纳米管结构的消光光谱及其近场电场分布, 并与金纳米柱的计算结果进行了比较. 结果发现, 当以等离子体共振峰波长入射时, 管状纳米结构拥有更大面积的强电场分布. 故管状纳米结构更适合作为表面增强拉曼散射的衬底, 用于生物分子或者化学分子的探测. 另外, 我们还研究了纳米管结构参数对其等离子体共振峰的影响, 以调节等离子体共振峰的位置, 从而满足其在表面增强拉曼散射等等离子体光子学方面的应用.  相似文献   

7.
《科学通报》2021,66(21):2709-2718
金钯双金属纳米结构由于独特的光学-催化协同耦合性质而受到广泛关注,在太阳能转化存储、多相催化、光电器件、生物成像、医学诊疗等领域展现出重要的应用价值.但具有协同性质的金钯纳米材料的合成制备仍然面临巨大挑战.本研究发展了溶液和固体表面上制备金钯纳米结构的两种方式.在金纳米棒种子溶液中,通过调控铜离子的浓度,制备了具有不对称钯分布的金钯凹角长方体和哑铃型纳米结构.研究揭示铜离子可以竞争吸附到金纳米棒表面,调控钯沉积到金棒表面的界面能,诱导钯在金棒表面的成核生长逐渐由外延生长向不连续分散生长模型转换,最终实现了金钯不对称纳米结构的制备.在固体表面介导的合成中,以固体表面支持的自组装金八面体单层为种子,通过控制生长溶液中的钯含量,制备了一系列不同钯负载量的金钯纳米结构.实验揭示由于固体表面的位阻效应,钯优先在背离固体基底的金八面体表面上成核生长,因此制备的金钯纳米结构具有不对称性.通过不同钯负载量下金钯纳米结构表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)的研究,获得了具有最优SERS性能的金钯异质组装基底结构,并实现了该基底催化对硝基苯硫酚加氢反应过程的原位SERS监测.预期本研究发展的金钯不对称纳米结构合成方法将在多相催化等领域发挥重要作用.  相似文献   

8.
近年来,通过自组装技术能够可控地将单个纳米颗粒组装成一维、二维或三维空间构象的新型复合材料.相对于单独的纳米颗粒,纳米颗粒组装材料可表现出许多新颖或优异的物理性质,具有巨大的应用前景,因此在纳米材料领域越来越受到关注并快速发展.尤其是贵金属纳米颗粒组装体具有独特的等离子激元光学性质,在生物传感、成像和治疗等方面具有广阔的应用前景.本文回顾了近年来通过分子介导方法对纳米颗粒进行组装及其生物应用的最新研究进展,重点介绍了几种分子介导的纳米颗粒组装技术,以及纳米颗粒组装体的生物医学应用,并展望了其发展前景.  相似文献   

9.
近几年来,为了提高对早期癌症监测和诊断的准确性,科学家们致力于研究和开发识别健康组织和癌症组织的生物医学成像技术[1,2].与此同时,造影剂的应用研究使得这些成像技术的灵敏度得到了进一步提高[3].金纳米颗粒能够在特殊波长对光进行吸收和散射[4];这种特殊的局域表面等离子体共振(LSPR)现象可以增强某些特定组织的光信号特征,从而提高成像的对比度,因此在医学光成像上具有潜在的应用前景.  相似文献   

10.
《科学通报》2012,(13):1125
金纳米颗粒由于独特的物理化学性质,近年来在癌症诊疗方面显示出令人瞩目的优势,由于其可调节的表面等离子共振,(localized surface plasmon resonance,LSPR)效应,金纳米粒子不仅在细胞成像方面具有广阔的应用前景,还可以通过  相似文献   

11.
金纳米颗粒因其具有独特的物理化学及光学性质, 在生物影像、癌症诊断治疗等领域表现出极大的应用前景, 但因小尺寸纳米金颗粒(<20 nm)在生理体液环境中稳定性较差、体内安全剂量低、被动靶向效果不明显等问题, 使其在体内成像, 尤其在活体肿瘤部位成像中受到较大局限. 本文针对上述问题, 将13 nm金颗粒生长在具有特殊核壳结构的夹心二氧化硅空腔之内, 形成具有新型结构的“摇铃形”金复合纳米二氧化硅(silica nanorattles@gold nanoparticles, SN@GN), 既保留金纳米颗粒的强散射特性以利于细胞和动物组织中实现暗场成像, 同时二氧化硅壳层将金颗粒保护起来, 提高了纳米颗粒的稳定性. 细胞毒性实验表明SN@GN的细胞生物相容性良好, 毒性低. 动物急性毒性实验表明, SN@GN的最大耐受剂量大于200 mg/kg, 而GN的体内最大耐受剂量仅为4.6 mg/kg, 显著提高了金纳米颗粒的生物相容性. 本研究为SN@GN在生物暗场影像领域的应用提供了重要的实验依据.  相似文献   

12.
由于光波衍射特性,传统光学光刻面临分辨力衍射极限限制,成为传统光学光刻技术发展的原理性障碍.表面等离子体(surface plasmon,SP)是束缚在金属介质界面上的自由电子密度波,具有突破衍射极限传输、汇聚和成像的独特性能.近年来,通过研究和利用SP超衍射光学特性,科研人员提出和建立了基于SP的纳米干涉光刻、成像光刻、直写光刻等方法,在紫外光源和单次曝光条件下,获得了突破衍射极限的光学光刻分辨力.目前,基于SP成像结构,实验中获得了22 nm(~1/17波长)最高SP成像光刻线宽分辨力水平.SP将为发展高分辨、低成本、高效、大面积纳米光学光刻技术提供重要方法和技术途径.本文系统综述了SP光学光刻技术研究发展情况,总结和分析了技术发展现状、存在问题,并对其发展趋势和前景进行了展望.  相似文献   

13.
钯纳米粒子体系中的近场耦合与SERS效应   总被引:2,自引:1,他引:1  
利用广义米氏散射理论(Generalized Mie)从理论上系统研究了球形钯纳米粒子二聚体的线性光学性质及其表面增强拉曼散射效应. 计算表明, 粒子间的近场耦合效应对粒子对的吸收、散射和消光光谱影响显著, 其表面等离子体激元共振峰的位置随粒子间隔的变小而显著红移. 在耦合效应和尺寸效应的共同作用下, 钯纳米粒子二聚体中“热点”位的最大SERS增强因子可达到107~108, 表面平均SERS增强因子可达105~106. 通过对远场和近场的对比研究, 发现消光谱与粒子间的近场增强谱的谱型大致相同, 但消光谱的极值峰位与SERS的最大增强峰位之间存在一定的偏离, 这显示了表面等离子激元共振对远场和近场的不同影响, 我们对此进行了讨论. 相关结果对揭示远场与近场的关联性及探索过渡金属体系中表面增强散射的电磁场增强机理有较重要的科学意义.  相似文献   

14.
表面修饰聚合物自组装多层的金纳米棒的表面增强荧光   总被引:2,自引:0,他引:2  
在金纳米棒表面自组装由阴离子聚合物和阳离子聚合物通过静电作用形成的聚合物多层结构,并研究了该金纳米棒的表面增强荧光效应.未经聚合物修饰的金纳米棒猝灭荧光素的荧光,最高猝灭率为91.5%.经聚合物自组装多层结构修饰后,金纳米棒增强荧光素的荧光.3层聚合物修饰的金纳米棒的荧光增强因子可达102级.  相似文献   

15.
金纳米材料在医学诊断和治疗领域有着很大的应用前景,其中金纳米棒(AuNRs)更是广泛应用于癌症治疗研究.本文中,硫普罗宁作为一种新型的巯基药物,被用来稳定金纳米棒得到Au-TIOP NRs.阿霉素(DOX)是一种化疗药物,通过与DNA反应扰乱细胞周期,从而诱导细胞凋亡,实验通过静电吸附将阿霉素连接到硫普罗宁包被的金纳米棒的表面从而获得Au-TIOP-DOX NRs,并进行了一系列的表征和初步的细胞毒性实验.另外本文提出,利用金纳米棒的近红外吸收和被动靶向肿瘤细胞的特性可实现肿瘤治疗,更重要的是,巯基药物硫普罗宁的羧基基团可以被DNA/RNA、功能多肽或药物分子等修饰,使金纳米棒成为一种新型的治疗癌症的药物输送系统.  相似文献   

16.
孙桂敏  刘媚  杨培慧  蔡继业 《科学通报》2011,56(13):1007-1012
通过晶种生长法制备长径比分别为4:1 和8:1 的金纳米棒, 分别在其表面修饰上抑癌基因p53 和pTEN 2 种不同序列的模型基因片段, 构建金纳米棒基因探针, 这两种基因探针分别于800 和1100 nm 处有2 个近红外吸收峰. 基于探针基因识别靶基因时, 金纳米棒的纵向等离子共振吸收峰吸光度的变化, 对2种靶基因片段混合体系建立特异性识别及检测方法. 结果表明, 在pH 为7.0 的PBS 缓冲溶液中, NaCl 浓度为0.2mol/L 时, 在靶基因片段的浓度为3.0~9.0 nmol/L 范围内, 金纳米棒的纵向等离子共振吸收峰的变化与靶基因的浓度成线性关系, 检出限分别为1.6 和1.2 nmol/L. 实现了在同一混合体系中同时对两种靶基因片段的特异性识别及检测.  相似文献   

17.
表面等离激元的调控研究与应用   总被引:1,自引:0,他引:1  
明海  王小蕾  王沛  鲁拥华 《科学通报》2010,55(21):2068-2077
随着对表面等离激元(SPPs)研究的日益深入和高精度纳米加工技术的不断进步, 表面等离激元亚波长光学得到迅速的发展. 由于SPPs具有表面局域和近场增强等特性, 在纳米光子学、能源、传感探测、生命科学等领域均有重要应用. 基于SPPs的特点, 介绍了材料、结构、材料和结构的复合以及柱面矢量光场对SPPs的调控特性及其应用.  相似文献   

18.
金纳米壳球体的光学特性及其应用研究进展   总被引:3,自引:0,他引:3  
谈勇  钱卫平 《科学通报》2005,50(6):505-511
金纳米壳球体是一种球状分层的纳米复合物颗粒, 由薄的金壳和绝缘体核组成. 在纳米壳球体的核-壳结构中, 其等离激元共振频率随核和壳相对大小的变化而系统地变化. 利用自组装和还原化学, 可以自由地设计和制造纳米壳球体, 使其等离激元共振吸收峰的位置位于光谱的近红外区. 金纳米壳球体这一独特的光学性质, 体现其人工设计的可控性, 在药物缓释、免疫分析、癌症治疗和成像以及生物传感等很多领域有着广阔的应用前景. 本文对金纳米壳球体的制备、性质及其应用研究进展作了综述, 并对金纳米壳球体未来的发展作了展望.  相似文献   

19.
贺卫东  张伟  栗苹 《科学通报》2011,56(20):1585-1592
表面等离激元光子学是研究光和金属表面自由电子耦合所引起金属表面电荷密度振荡的性质及其应用的一门学科. 金属中的自由电子在入射光的作用下产生集体振荡. 在垂直表面的方向上强度呈指数衰减, 使得亚波长金属结构中光场高度局域. 由于独特的光学性质, 使得其具有广泛的应用, 其中两个重要的分支为: 表面增强光谱和表面等离激元共振传感器. 表面增强光谱传感器是利用纳米结构的巨大表面增强效应来直接探测表面分子,表面等离激元共振传感器通过检测目标分子对等离激元共振峰的影响进行定性定量检测.这两种优势互补的传感器技术都可以达到单细胞甚至单分子的检测水平. 本文将论述表面等离激元光子学的原理、表面增强光谱和表面增强光谱传感器研究领域的国内外最新进展和发展趋势.  相似文献   

20.
表面等离子体共振是金属纳米结构非常独特的光学特性,基于表面等离子体共振的纳米结构体系的研究已形成了国际上迅猛发展的热点研究领域之一,即表面等离子体光子学。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号