首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 206 毫秒
1.
研究了一阶周期边值问题{u'(t)+a(t)u(t)=λf(t,u(t)), t∈[0,T],u(0)=u(T)正解的个数与参数λ的关系, 其中λ>0, a∈C(R, [0,+∞))且∫T0a(θ)dθ>0, f∈C([0,T]×[0,+∞),(0,+∞))以及f=limu→∞ inf(f(t,u))/u=∞对任意的t∈[0,T]一致成立。 运用上下解方法及拓扑度理论, 获得存在λ*>0, 当λ>λ*时, 该问题不存在正解, λ=λ* 时, 该问题恰有一个正解; 0<λ<λ* 时, 该问题至少存在两个正解。  相似文献   

2.
研究带非齐次边界条件的两端简单支撑的弹性梁方程■多个正解的存在性,其中f∈C([0,1]×[0,∞),[0,∞)),b>0,且对给定的x∈[0,1],f(x,s)关于s单调递增。在适当的条件下,证明存在b*>0,使得当0*时至少存在两个正解;当b=b*时至少存在一个正解;当b>b*时无正解。该结果的证明基于上下解方法和拓扑度理论。  相似文献   

3.
考察一类半正二阶Neumann边值问题■正解的存在性,其中λ是正参数,a∈C[0,1]且■∈C([0,1]×R+,R)且f(t,0)<0。证得存在一个正数λ0,使得当0<λ<λ0时,该问题存在一个正解。主要结果的证明基于拓扑度理论。  相似文献   

4.
本文研究了一阶半正常微分系统周期边值问题■正解的存在性,其中,参数λ>0,函数a,b∈C([0,1],[0,∞))且在[0,1]的任何子区间上不恒为0,f,g∈C([0,1]×?,?),f(x,0)<0,g(x,0)<0.基于拓扑度理论,本文证明:存在λ0>0,使得当0<λ<λ0时该问题至少有一个正解.  相似文献   

5.
奇异非线性四阶边值问题的正解   总被引:2,自引:0,他引:2  
证明存在两个正数0<λ**<+∞, 使得奇异非 线性四阶边值问题y(4)(x)=λh(x)f(y(x)),0*)时, 无正解; 当λ∈(λ*,+∞)时, 存在1个正解; 当λ∈(λ*,+ ∞)时, 存在3个解, 其中有2个为正解, 只要f(y)在y=0处是超线性, 并在y=+∞处是次线 性的.  相似文献   

6.
本文研究如下带双临界指数的凹凸非线性分数阶Schr?dinger-Poisson系统■式中:10是实参数;h为满足一定条件的函数。利用变分法和山路定理,本文证明存在λ*>0,使得当λ∈(0,λ*)时,该系统在Ds,2(R3)中存在1个具有负能量的局部极小正解和1个具有正能量的山路解。  相似文献   

7.
本文研究了非线性二阶半正周期问题■正解的存在性,其中λ为正参数,a:■:■均为连续函数,ω是[0, 1]上的连续函数且|ω(t)|≤k,f:■为连续函数且满足■.运用锥上不动点定理证明了:存在常数λ*>0,使得对于λ∈(0,λ*),该问题至少有一个正解.  相似文献   

8.
研究二阶半正问题■正解的存在性,其中λ为正参数,α,δ>0为常数,b,c∈C([0,∞),[0,∞)),h∈C([0,1],[0,∞)),f∈C([0,∞),R),f>-M(M>0)且f:■。主要定理的证明基于Krasnoselskii不动点定理。  相似文献   

9.
用拓扑度理论研究环域上2m阶半正椭圆方程■正径向解的存在性,其中λ>0是一个参数,m≥1是一个正整数,Ω={x∈?n;■表示外法向量的导数,f∈C([a,b]×[0,∞),?).结果表明:在适当的条件下,存在λ0>0,使得当0<λ<λ0时,上述问题至少有一个正径向解.  相似文献   

10.
用Schauder不动点定理和拓扑度理论研究变系数二阶常微分系统Neumann边值问题■正解的存在性,其中:f,g:[0,1]×?→?连续,且f(x,0)<0,g(x,0)<0;a,b∈C([0,1],[0,∞)),且在[0,1]的任何子区间上不恒为0.结果表明,在适当的条件下,存在λ0>0,使得当0<λ<λ0时,该问题至少有一个正解.  相似文献   

11.
本文考虑二阶常微分方程三点边值问题{u″(t)+h(t)f(u)=0,t∈(0,1),u′(0)=0,u(1)=λu(η),其中η∈[0,1),参数λ∈[0,1),函数f∈C([0,∞),[0,∞))满足f(s)0,s0,h∈C([0,1],[0,∞))在[0,1]的任意子区间内不恒为零.在满足条件f0=0,f∞=∞时,本文讨论了该边值问题解所构成的连通分支随着参数λ在[0,1]内的变化而变化的情形,建立了正解的全局结构.主要结果的证明基于锥上的不动点指数定理以及解集连通性质.  相似文献   

12.
本文研究了一类一阶差分方程周期边值问题-Δx(t)+q(t)x(t)=λa(t)x(t)+f(t,x(t))x(t),t∈T,x(0)=x(T)正解连通分支的振荡及无穷多个正解的存在性,其中λ0是参数,T2是整数,T:={0,1,…T-1},q:T→[0,∞),a:T→(0,∞),f:T×R→R连续,f(t,0)=0.主要结果的证明基于Rabinowitz全局分歧定理.  相似文献   

13.
本文研究了一类四阶非线性常微分方程边值问题 $$ \left\{\begin{array}{ll} u''=r f(t, u(t)), \ \ \ 0相似文献   

14.
本文运用迭代法研究了带p-Laplacian算子的四阶Sturm-Liouville边值问题{(φp(u″(t)))″+q(t)f(t,u(t),u″(t))=0,t∈(0,1),αu(0)-βu′(0)=0,γu(1)+δu′(1)=0,u″(0)=0,u'(0)=0正解的存在性,其中φp(s)=|s|~(p-2)s,p1;f:[0,1]×[0,+∞)×R→[0,+∞)连续;q(t)0,t∈(0,1).  相似文献   

15.
本文研究了三点边值问题{u″-k2u+a(t)f(u)=0,t∈(0,1),u(0)=0,u(1)=αu(η)正解的存在性,其中a∈C([0,1],[0,∞)),η∈(0,1),α∈(0,sinh(k)/sinh(kη)),f∈C([0,∞),[0,∞)).主要结果的证明基于锥上的不动点定理.  相似文献   

16.
{\small 本文运用混合单调算子方法研究了带积分边界条件的三阶边值问题 $$\left\{\begin{aligned} &-u''(t)=f(t,u(t),u(\xi t))+g(t,u(t)),\quad~t\in(0,1), \xi\in(0,1),\&u(0)=u''(0)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\&u''(1)=\int_{0}^{1}q(t)u''(t)dt~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \end{aligned} \right. $$ 正解的存在唯一性,~其中~$f:[0,1]\times[0,+\infty)^{2}\rightarrow[0,+\infty)$连续,~$g:[0,1]\times[0,+\infty)\rightarrow[0,+\infty)$连续,~$q\in C([0,1],[0,+\infty))$. }  相似文献   

17.
本文运用双度量空间中的广义Krasnoselskii’s压缩不动点定理研究了二阶非线性积分边值问题u″+a(t)f(t,u(t),u′(t))=0,t∈(0,1),u(0)=0,u(1)=α∫~η_0u(s)ds正解的存在唯一性,其中■:[0,1]×[0,∞)×R→[0,∞)连续,且当t_0∈[η,1]时a(t_0)0.  相似文献   

18.
本文运用Dancer全局分歧定理研究了带参数的一阶周期边值问题■正解的全局结构,获得了正解存在的最优区间.其中r为正参数,f∈C(R,R),a∈C([0,1],[0,∞)),且a(t)在[0,1]的任意子区间内不恒为0.  相似文献   

19.
本文研究了非线性二阶差分方程~Dirichlet~边值问题 $$ \left\{\begin{array}{ll} \Delta^{2}u(t-1)+\lambda a(t)f(u(t))=0,~~~t\in[1,T]_{Z},\u(0)=u(T+1)=0 \end{array} \right. $$ 正解的存在性,~其中~$\Delta u(t-1)=u(t)-u(t-1),T>2$~是一个整数,~$\lambda$~是一个正参数,~$f:[0,\infty)\rightarrow R$~连续且~$f(0)>0$,~权函数~$a:[1,T]_{Z}\rightarrow R$~允许变号.~本文主要结果的证明基于~Leray-Schauder~不动点定理.\\  相似文献   

20.
非线性Sturm-Liouville问题的一个正解存在定理   总被引:2,自引:1,他引:1  
研究了非线性~Sturm-Liouville~边值问题的正解存在性,~%其中非线性项~$f(t,u)$~可以在~$t = 0,\,t = 1$~处奇异.~%通过引入非线性项在有界集合上的高度函数的积分来描述非线性项的增长变化.~%在极限函数~$\mathop {\lim }\limits_{u \to + 0} f(t,u) / u$,$\mathop{\lim }\limits_{u \to + \infty } f(t,u) /u$~存在的情况下利用度理论中的~Krasnosel'skii~不动点定理和实变函数论中的控制收敛定理证明了一个正解存在定理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号