首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
研究了亚纯函数以权1分担两个公共值集的唯一性问题,设S={ω∈C;aωn-n(n-1)ω2+2n(n-2)bω-(n-1)(n-2)b2=0},其中a,b为两个非零复数,且满足abn-2≠2,如果n≥11,f和g以权1分担S,E—(∞,f)=E—(∞,g),则f≡g.  相似文献   

2.
f(z)是一个亚纯函数,g(z)是f(z)的一个齐次微分多项式且f(z)与g(z)有相同的级。方程f(z)=0,f(z)=∞,g(z)=1的根分布在射线束;re~(iω)_1,re~(i(?))_1,…re~(iω)_(?)(r≥0,q≥1)上,并且δ(0,f)+δ(∞,f)+δ(1,g)>0。则f的级ρ必是有穷的,且 ρ≤β=sup{π/ω_2-ω_1,π/ω_3-ω_2,…,π/ω_(q+1)-ω_q} [ωq+1=2π+ω_1]  相似文献   

3.
研究了当n>2k+m*时,满足E(S,[fn(μfm+λ)](k))=E(S,[gn(μgm+λ)](k))的整函数f与g的唯一性理论,其中S={1,ω,…,ωl-1},l≥4.  相似文献   

4.
研究了亚纯函数及其k阶导数权分担小函数集的唯一性,得到了:设k,n为正整数,f,g为开平面上超越亚纯函数,以∞为IM公共值,E(S1,f)=E(S1,g)且E1(S2,f(k))=E1(S2,g(k)l(≥2)∈N如果2nδ2+k(an,fn)+(nk+4)Θ(∞,f)n(k+1)+4则f≡tg(tn=1)或[f(k)n(akn)][(gkn)(akn)]=]bn-(akn])2,并且文中还讨论了当l=0,1时的情形.这些定理推广和改进了先前的一些结果.  相似文献   

5.
本文主要研究了全纯函数分担一个非零多项式的唯一性问题,并且得到了:若f,g为2个非常数的超越整函数,n,k,l为3个正整数且满足5l>4n+5k+7.如果[L(f)](k)与[L(g)](k)IM分担次数小于或等于5的非零多项式P(z),则或者f(z)=λ1eλQ(z)+c,g(z)=λ2e-λQ(z)+c,或者f(z)与g(z)满足代数方程R(f,g)≡0,这里Q(z)=∫z0p(z)dz,λ1,λ2,λ及c为4个常数,且满足等式(λ1λ2)n(nλ)2=-1,并且R(ω1,ω2)=L(ω1)-L(ω2).此外,就[L(f)](k)与[L(g)](k)IM或CM分担不动点的情形也进行了详细的研究。  相似文献   

6.
本文主要研究了全纯函数分担一个非零多项式的唯一性问题,并且得到了:若f,g为2个非常数的超越整函数,n,k,l为3个正整数且满足5l>4n+5k+7.如果[L(f)](k)与[L(g)](k)IM分担次数小于或等于5的非零多项式P(z),则或者f(z)=λ1eλQ(z)+c,g(z) =λ2e-λQ+(z),或者f(z)与g(z)满足代数方程R(f,g)≡0,这里Q(z)=fz0P(z)dz,λ1,λ2,λ及c为4个常数,且满足等式(λ1λ2)n(nλ)2 =-1,并且R(ω1,w2)=L(ω1)-L(w2).此外,就[L(f)](k)与[L(g)](k)IM或CM分担不动点的情形也进行了详细的研究.  相似文献   

7.
研究CM分担小函数的亚纯函数唯一性问题.得到两个唯一性定理:定理1 设f(z)和g(z)是非常数亚纯函数,α(z)和β(z)分别是f(z)和g(z)的小函数.如果δ(∞,f)=δ(∞,g)=1,δ(0,f) δ(0,g)>1,P(f)=α Q(g)=β,则βP(f)≡αQ(g)或P(f)Q(g)≡αβ  定理2 设f(z)是非常数亚纯函数,α(z)是f(z)的非零小函数,f-α的零点重数为1.如果f=α f′=α,且当λ<1/2时2N(r,f) N(r,1/f′) N(r,1/(f″-α′)) N(r,1/(f′-α′))<λT(r,f)则f′-αf-α≡c (非零常数).  相似文献   

8.
设f(z)是下级μ<∞的亚纯函数,a_i(z)是满足T(r,a_i)=0{T(r,f)}的亚纯函数,若??δ(a_i(z),f)=1;δ(∞,f)=1, 则a)f的级λ=μ,且为正整数; b)f的亏函数总数≤μ+1; c)每一个亏量为1/μ的整数倍; d)每一个亏函数都是f的渐近函数.  相似文献   

9.
k≥3是正整数,S=ωω7-42ω2+70ω-30=0},f与g为两个满足min{(∞,f),(∞,g)>1/2的非常数亚纯函数,如果Ek)(S,f)=Ek)(S,g),E({ ∞}f)=E({∞},g),则必有f=g。ωωωω  相似文献   

10.
本文主要研究了全纯函数分担一个非零多项式的唯一性问题,并且得到了:若f,g为2个非常数的超越整函数,n,k,l为3个正整数且满足5l>4n+5k+7.如果[L(f)](k)与[L(g)](k)IM分担次数小于或等于5的非零多项式P(z),则或者f(z)=λ1eλQ(z)+c,g(z)=λ2e-λQ(z)+c, 或者f(z)与g(z)满足代数方程R(f,g)≡0,这里Q(z)=∫z0p(z)dz,λ1,λ2,λ及c为4个常数, 且满足等式(λ1λ2)n(nλ)2=-1,并且R(ω1,ω2)=L(ω1)-L(ω2).此外,就[L(f)](k)与[L(g)](k)IM或CM分担不动点的情形也进行了详细的研究。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号