首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用简单液体浸渍还原法合成出Ru@UIO-66、Co P@UIO-66、Ru P@UIO-66和Ru Co P@UIO-66催化剂.利用XRD、TEM、ICP-AES、BET和XPS等物理手段对其结构、形貌、尺寸、组成、比表面及金属价态等进行表征.催化活性实验通过催化氨硼烷水解释氢速率进行检测.结果表明,非金属磷的加入显著提高了催化活性,其中三组分Ru Co P@UIO-66催化活性最高,其反应的转换频率(TOF)和活化能(Ea)分别为105.36 mol H2min-1(mol Ru)-1和44.5 k J mol-1.这种高的催化活性主要归因于UIO-66的高比表面积和多孔结构使负载粒子均匀分散,同时P的加入减小了Ru和Co纳米粒子的粒径,也增强了Ru-Co-P之间的电子效应.此外,Ru Co P@UIO-66催化剂经过5次循环后,仍然保留初始催化活性的55.6%,有较好的循环稳定性.  相似文献   

2.
采用浸渍还原法成功制备不同比例的双金属负载型催化剂Ru Co@UIO-66-NH_2,并用于室温催化氨硼烷水解产氢性能研究.通过一系列表征手段分析了该催化剂的结构、粒径分布、元素组成及价态,并在室温下通过催化氨硼烷水解释氢实验研究其催化活性.结果表明,非贵金属Co的加入能显著提高Ru的催化活性,Ru1Co1@UIO-66-NH_2催化剂表现出最高的催化活性,其TOF值为570. 8 mol H_2min~(-1)(mol Ru)~(-1),活化能为39. 2 k J mol~(-1).  相似文献   

3.
采用一步水热法合成出BiVO_4微球,首次以BiVO_4微球为载体通过浸渍还原法,制备出Ru/Ag不同摩尔比的RuAg@BiVO_4催化剂,并用于催化氨硼烷水解产氢.催化剂的结构、组成、形貌以及负载金属的电子状态分别运用XRD、TEM、SEM、EDS、XPS等手段进行表征,并探究催化剂在不同温度下的催化活性.结果发现,由于双金属Ru和Ag之间强的电子效应以及金属RuAg与载体BiVO_4微球之间的双功能机制,使RuAg@BiVO_4表现出高的催化活性,其中Ru_(0.6)Ag_(0.8)@BiVO_4的催化性能最佳,该反应的活化能(Ea)和转化频率(TOF)分别为33.8 kJ/mol和150.5 mol H_2 min~(-1)(mol Ru)~(-1),这种制备简单、催化活性显著的催化剂为新型高效催化剂的研究提供了重要的参考价值.  相似文献   

4.
以不同焙烧温度的TiO_2纳米棒为载体,采用化学还原浸渍法制备Ru/TiO_2催化剂。利用X线衍射(XRD)、H_2化学吸附、扫描电子显微镜(SEM)和NH_3程序升温脱附(NH_3-TPD)等手段表征催化剂的物理化学性质,并考察催化剂在苯选择性加氢反应中的催化性能。结果表明:焙烧温度并未改变TiO_2的晶型结构及形貌,但随着载体焙烧温度的升高,Ru粒子的分散度减小,从而使Ru/TiO_2催化剂的活性降低;同时,随着Ru/TiO_2催化剂酸量的减小,环己烯吸附量减小,环己烯的选择性提高; 700℃焙烧的TiO_2负载的Ru催化剂上环己烯收率最高(41%)。  相似文献   

5.
Mo添加对金属Ru电催化氧还原性能的影响   总被引:1,自引:1,他引:0  
以Ru3(CO)12和Mo(CO)6为前驱体,在1,6-己二醇介质中采用低温回流法合成了Ru-Mo催化剂。利用SEM、XRD和旋转圆盘电极(RDE)技术表征了催化剂的物理特征和催化性能。Ru-Mo催化剂呈现以六方结构Rux簇为主相的纳米颗粒特征,同时形成无定形相,聚集颗粒高度分散。在氧气饱和的0.5 mol/L H2SO4溶液中,Ru-Mo催化剂对氧还原的电催化活性和稳定性明显高于Rux簇合物,开路电位为0.91 V(vs.NHE)。  相似文献   

6.
采用燃烧法制备了不同含量La掺杂的CeO_2载体,并采用等体积浸渍法将Ru负载于载体上,得到了一系列Ru/La_xCe_(1-x)O_δ催化剂。采用X-射线衍射(XRD)、N2物理吸脱附以及拉曼光谱(Raman)、扫描电子显微镜(SEM)、ICP等表征手段分析了催化剂的结构组成与表面性质,并研究了其催化湿式氧化丙烯酸废水的性能。结果表明:Ru/La_(0.2)Ce_(0.8)O_δ催化剂具有优异的催化湿式氧化降解丙烯酸活性,在260℃、P(O_2)=7 MPa、催化剂用量为4g/L时,反应30min后废水CODCr去除率可达96%,TOC转化率为93%,并且催化剂重复利用10次后仍然保持良好的活性和稳定性。这与催化剂大比表面积、高分散Ru纳米颗粒以及氧缺位数量有着密切的关系。  相似文献   

7.
以多孔金属有机骨架UIO-66为基材,采用浸渍还原法分别合成了Au@UIO-66和Pd@UIO-66两种负载型催化剂,通过透射电镜(TEM)、X射线衍射(XRD)、红外光谱(IR)、N2物理吸脱附对所制备催化剂进行了表征。结果表明:尺寸为13nm的金纳米粒子(AuNPs)均匀分散在载体上,钯纳米(PdNPs)呈现出纳米粒子(粒径5~8nm)和纳米线两种状态,且分散均匀。研究了两种催化剂在不同条件下催化还原对硝基苯酚的性能,结果表明:Au@UIO-66和Pd@UIO-66这两种催化剂都具有较高的催化活性,各使用10mg催化100mL、1.6×10~(-4) mol/L的对硝基苯酚溶液,5min内对硝基苯酚都可达到95%以上的转化率。  相似文献   

8.
通过一步还原法制备了还原氧化石墨烯纳米片负载的铜纳米粒子复合材料(CuNPs-rGO-20%,CuNPs-rGO-80%,CuNPs-rGO-120%),并利用循环伏安法分别在0.1 mol/L KOH水溶液和离子液体(Ionic Liquid,IL)1-丁基-3-甲基咪唑四氟硼酸盐([Bmim] BF_4)电解液中进行电化学测试来研究其对氧还原反应(Oxygen Reduction Reaction,ORR)的电催化效果.采用透射电镜(TEM)和X射线衍射仪(XRD)对所制备的纳米粒子催化剂进行表征.TEM和XRD结果表明,所制备的CuNPs-rGO-80%纳米粒子表面主要为Cu(111)晶面,平均粒径约为10 nm.电化学测试结果表明,与商业化Pt/C(质量浓度20%)催化剂相比,CuNPs-rGO-80%纳米催化剂在IL中具有优异的ORR电催化活性,ORR的起始电位更正,ORR峰电位正移150 mV,还原电流密度更大.  相似文献   

9.
电沉积法制备PtRuNi、PtRuMo催化剂及甲醇电氧化性能研究   总被引:1,自引:1,他引:1  
采用恒电位法在玻碳电极上沉积PtRu、PtRuN i和PtRuMo催化剂,研究了催化剂在硫酸溶液中对甲醇的电氧化性能;采用EDS-SEM观察催化剂的形态和测试催化剂的整体组成.研究结果表明,三种催化剂的组成(原子比)分别为Pt/Ru/Mo=3/1/1,Pt/Ru/N i=5/1/0.13,Pt/Ru=3/1,沉积的粒子为球形,粒径在100~600 nm.三种催化剂对甲醇的电氧化活性依次为PtRuMo>PtRuN i>PtRu.  相似文献   

10.
Ru/CNTs高效催化转化纤维二糖制备山梨醇   总被引:2,自引:0,他引:2  
针对纤维素的转化,以纤维二糖催化加氢制备山梨醇为模型反应,研究了负载Ⅷ及IB族金属催化剂的催化性能.研究发现,在测试的金属组分中,负载Ru、Ir催化剂显示了较高的转化纤维二糖生成山梨醇性能.在使用碳纳米管(CNTs)、活性炭(AC)、Al_2O_3、HY、SiO_2、CeO_2、MgO等不同载体制备的催化剂中,Ru/Al_2O_3及Ru/CNTs显示较高山梨醇收率.在185℃中性水溶液中,最佳催化剂Ru/CNTs上的山梨醇收率为87%.初步探讨了Ru/CNTs催化剂上纤维二糖转化为山梨醇的反应途径.纤维二糖首先主要通过加氢反应生成3-β-D-吡喃糖醇,而后,3-β-D-吡喃糖醇水解为山梨醇和葡萄糖,而生成的葡萄糖可以迅速加氢转化为山梨醇.山梨醇还可异构为甘露醇和降解生成其它低碳醇.  相似文献   

11.
近年来,负载型金属纳米催化剂的制备及其性能研究一直是催化领域重要的研究课题.通过分子动力学(MD)模拟研究了受限在单壁碳纳米管(SWNT)内金纳米粒子在升温和降温过程中的相变.结果表明,受限金纳米粒子在室温下表现出两种不同类型的圆筒状多层结构.基于MD模拟,我们观察到了一个有趣的现象,即受限金纳米粒子的熔点随粒子增大而降低.对于受限的金纳米粒子来说,每一层的有序-无序的结构转变是受限金纳米粒子熔化的本质结构特征.  相似文献   

12.
采用研制的La-Sr-Co-Mn系负载型复合氧化物纳米粒子催化剂对丙烷深度催化氧化进行了小试试验。通过考查催化剂对丙烷气体的氧化程度来考查其对小试装置工艺条件的适应性。试验表明负载型纳米粒子催化剂对装置工艺条件具有很好的适应性。在小型试验装置上催化剂的最佳操作条件为:氧比8~10,空速1 300 h-1,丙烷浓度1.1%。经1 400 h的连续运转,催化剂的活性基本没发生变化,表明了负载型纳米粒子催化剂在考查时间范围内具有良好的稳定性。  相似文献   

13.
采用浸渍-还原法制备了Ru/羟基磷灰石(HAP)催化剂,并考察了Ru负载量、还原剂硼氢化钠的用量、还原温度以及反应条件对催化剂Ru/HAP催化BH3NH3水解产氢的影响.结果表明:当Ru的负载质量分数为0.3%、Ru与还原剂硼氢化钠的物质的量比为1.0:2.2、还原温度为303 K时,Ru/HAP催化剂催化BH3NH3水解产氢的转化频率TOF为125 mol H2·mol-1Ru·min-1.当搅拌转速为450 r·min-1时,外扩散限制消除,产氢速率最大.产氢速率与催化剂浓度成正比,氨硼烷水解产氢反应由催化剂界面反应控制,Ru/HAP催化剂催化BH3NH3水解产氢反应对催化剂浓度反应级数为0.8.随着反应温度的升高,氨硼烷产氢速率系数增大,副产物偏硼酸钠越易从催化剂表面脱附,产氢速率逐渐增大.反应动力学计算表明Ru/HAP催化剂催化BH3NH3水解产氢反应对氨硼烷浓度为0级反应,活化能为44 kJ·mol-1.  相似文献   

14.
采用水热-氢气还原法合成了镁铝复合金属氧化物负载Ru纳米颗粒催化剂,利用X射线衍射(X-ray diffraction,XRD)、扫描电镜(scanning electron microscope,SEM)、透射电镜(transmission electron microscope,TEM)、N_2物理吸附、CO_2-程序升温脱附(CO2-temperature programmed desorption,CO_2-TPD)、电感耦合等离子体发射光谱(inductively coupled plasma-optical emission spectroscopy,ICP-OES)等表征手段对催化剂进行结构、形貌和组成分析。结果表明,镁铝物质的量之比n(Mg):n(Al)=5:1的催化剂载体具有最强的碱性(142.81 mmol·g~(-1))和较大的比表面积(97.0 m~2·g~(-1)),有利于负载高分散的Ru纳米颗粒。在最佳反应条件(120℃、2 MPa O_2、5 h)下,负载量为2.0%的RO-5催化剂能够高效催化5-羟甲基糠醛(5-hydroxymethylfurfural,HMF)氧化制备2,5-呋喃二甲酸(2,5-furandicarboxylic acid,FDCA),HMF转化率和FDCA产率分别达到100.0%和99.0%。条件优化实验进一步证实,HMF催化氧化的反应路径为生成2,5-呋喃二甲醛(2,5-diformylfuran,DFF)和5-甲酰基-2-呋喃甲酸(5-formyl-2-furancarboxylic acid,FFCA)中间产物的过程。  相似文献   

15.
甲酸被认为是一种有前景的化学储氢材料,其释放的氢气能够供给质子交换膜燃料电池使用,应用的关键是要寻找到具有优异性能的催化剂能够使得其在温和的温度调节下产氢.该文使用一步共还原法制备了表面氨基功能化负载的Pd纳米催化剂(Pd@NH2-SBA-15).通过FT-IR、SEM和TEM等技术表征表明Pd@NH2-SBA-15催化剂成功地被合成,尺寸约为2.1 nm的超细Pd纳米粒子均匀地分散在NH2-SBA-15载体上.Pd@NH2-SBA-15催化剂可用于催化甲酸分解制氢.结果表明:在室温下,Pd@NH2-SBA-15催化甲酸分解产氢表现出优异的催化活性,初始转换频率(TOF)值为1 686 h-1,氢气选择性为90%.Pd@NH2-SBA-15催化剂优异的催化性能主要归因于超细的Pd纳米粒子、嫁接到SBA-15上的氨基官能团,以及Pd纳米粒子与载体之间的协同增强催化作用.  相似文献   

16.
Pt纳米粒子作为典型的贵金属催化剂,具有高效的催化性和选择性。但一般Pt纳米粒子容易产生聚集沉淀,从而限制了其进一步的应用。本文通过制备嵌段共聚物聚乙二醇-b-聚-4-乙烯基吡啶(PEG-b-P4VP)胶束为模板,通过氯铂酸与吡啶基团的络合作用,氯铂酸将负载到胶束的核上,然后利用硼氢化钠(Na BH4)还原得到胶束负载的Pt纳米粒子。通过动态光散射(DLS)、透射电子显微镜(TEM)、X-射线能谱仪(EDS)等对胶束进行了表征。结果表明,Pt纳米粒子成功负载到胶束上。在此基础之上,加入5,10,15,20-四-(4-对磺酸基苯基)-锌卟啉(Zn TPPS),制备出同时负载Pt纳米粒子和Zn TPPS的PEG-b-P4VP/Pt/Zn TPPS复合胶束,对其进行了光谱表征和光学稳定性的测试。该复合胶束在光照产氢等领域有着重要的应用。  相似文献   

17.
碳纳米管负载Mo-Co-S加氢脱氮催化剂研究   总被引:7,自引:1,他引:6  
用多壁碳纳米管(简写为CNTs)作载体制备负载型Mo Co S催化剂,x%MoiCoj/CNTs(x%为质量百分数),以乙腈和吡咯的加氢脱氮(HDN)作为探针反应,考察它们在该类催化剂上加氢脱氮的反应化学行为,并与γ Al2O3 和活性炭(AC)分别负载参比样作比较研究.实验发现,在583 K,0.1 MPa,CH3CN/H2 =2.3/97.7(mol/mol),GHSV=2 200 mL(STP)·h-1·(g catal.)-1的反应条件下,在7.2%Mo3Co1/CNTs催化剂上,所观测乙腈 HDN的比反应速率达到 0.51μmol CH3CN·s-1·(mmol Mo)-1,是γ Al2O3 和AC分别负载相同Mo3Co1 载量催化剂的1.46和1.76倍,相应各自最佳Mo3Co1 载量催化剂的1.89和2.55倍.相似的反应化学行为在吡咯 HDN反应中也观测到.对比研究表明,用 CNTs代替γ Al2O3 或AC作为催化剂载体并不导致所负载Mo3Co1 催化剂上乙腈或吡咯HDN反应的表观活化能发生明显变化.H2 TPR研究揭示,与γ Al2O3 或AC负载的体系相比,CNTs负载催化剂具有较高的可还原性:不仅表现在其还原所需温度较低,还表现在较高的还原“比耗氢量”,后者暗示有较多的高价 Mon+ 物种可被还原至具催化活性的较低价态(Mo4+);在另一方面,CNTs载体对H2 优异的吸附活化性能可期在工作态催化剂表面营造较高氢稳态浓度的表面氛围;这两方面的因素都有助于乙腈或吡咯加氢脱氮反  相似文献   

18.
负载型催化剂可以解决均相催化剂存在的难分离、不易回收等缺点,磁性纳米粒子在催化化学反应的过程中,可以均匀地分散在反应体系中,与反应物充分接触,而提高反应速率,表现出优良的催化性能.综述了近年来磁性核壳型纳米负载催化剂的制备及应用,即γ-Fe_2O_3或Fe_3O_4为磁核和以尖晶石铁氧体(MFe_2O_4)为磁核的磁性核壳型纳米负载催化剂在C—C偶联反应、氧化反应、氢化反应等几类重要有机反应中的应用,进而对其研究前景进行了展望.  相似文献   

19.
采用浸渍-化学还原法制备了Ru/ZrO_2催化剂,并考察了钌负载量、硼氢化钠的用量、还原温度以及反应条件对催化剂Ru/ZrO_2催化BH_3NH_3水解产氢的影响。结果表明,在钌的负载量为0.4%,钌与还原剂硼氢化钠的物质的量比为1∶1.6,还原温度为303 K时,Ru微晶尺寸为3.2 nm, Ru/ZrO_2催化剂催化BH_3NH_3水解产氢的转化频率TOF(turn over frequency)为38.4 mol/mol(Ru)·min。搅拌转速为450 r/min时,外扩散限制消除,产氢速率最大;产氢速率与催化剂用量成正比,氨硼烷水解产氢反应由催化剂界面反应控制;随着反应温度的升高,氨硼烷产氢速率系数增大,副产物偏硼酸钠越易从催化剂表面脱附,产氢速率越大。反应动力学计算表明Ru/ZrO_2催化剂催化BH_3NH_3水解产氢速率与氨硼烷浓度无关,活化能为66 kJ/mol。  相似文献   

20.
通过两步化学还原法合成了不同壳层厚度的核壳型Ru@Pt纳米粒子,采用X射线衍射光谱(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和X射线能谱(EDS)等手段对粒子的晶体结构、表面元素、微观形貌及组成进行物理表征;应用循环伏安法和交流阻抗法对电催化氧化甲醇的催化性能进行电化学测试。结果显示,制备的Ru@Pt纳米粒子直径约为2~4nm,为核壳型结构;不同Ru@Pt样品氢的脱附峰随n(Pt)∶n(Ru)比值的增大呈现先增加后减小的"山形"趋势,其中n(Pt)∶n(Ru)=0.5∶1样品的脱附峰值最高;由于核层Ru对Pt壳层产生电子效应,使核壳型纳米粒子电化学活性面积增大,且电子效应越强活性比表面积越大;随着纳米粒子电子效应的增强,其比质量活性增大,甲醇反应过程的阻抗降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号