首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

2.
§1.导言设f(x)~1/2α_0+sum from n=1 to ∞(α_ncos nx++b_nsin nx),帕蒂于[1]中证明了: 定理A.设f(x)是一个周期2π的可积周期函数。{λ_n}是一个凸的数列,它满足∑n~(-1)λ_n<∞。则当x_0是f(x)的勒贝格点时,级数1/2α_0λ_0+sum from n=1 to ∞λ_n(α_ncos nx_0+b_nsin nx_0)是  相似文献   

3.
证明了如下定理: 设f(z)=sum from n=1 to ∞(1/n)a_nP_m(z)为一整函数,P_n(z)为Legendre多项式,λ为一正数,如果(n+1~λ/n)a_n/a_(n+1)|为n的终归单增函数,则有 (α,f)<{1+0(1)}λ~(-λ-1)Γ(1+λ)e~λv(α,f)μ(α,f);■  相似文献   

4.
设Ω是R~m(m≥2)中一个有界区域,考虑多调和算子组的特征值问题AΛ(△)u~T=λu~T,x∈Ωu~k=(?)u~k/(?)n=…=(?)~(k-1)u~k/(?)n~(k-1)=0,x∈(?)Ω,k=1,2,…,N其中,u=(u~1,u~2,…,u~N),n是(?)Ω的单位外法向量。将特征值按增加的顺序排列为0<λ_1≤λ_2≤…≤λ_n≤…则成立如下不等式λ_(n 1)≤λ_n 4/m~2n~2(sum from i=1 to n sum from h=1 to N λ_i~(1/k))(sum from i=1 to n sum from k=1 to N k(2k m-2)λ_i~(1-1/k)) sum from i=1 to n sum from k=1 to N λ_i~(1/k)/λ_(n 1)-λ_i≥m~2n~2/(sum from i=1 to n sum from k=1 to N 4k(2k m-2)λ_i~(1-1/k))  相似文献   

5.
本文考虑随机Direhlet级数f(s,ω)=sum from n=1 to ∞(1/n)b_nZ_n(ω)e~(-λns)(1)这里{λ_n}满足0≤λ_1<λ_2<…<λn<…<↑+∝(2)当(1)的收敛横坐标σ_c(ω)-0 a.s.和f(s,ω)是几乎必然零级的随机Dirchlet级数时,引进准确零(R)级,考虑了[1]的几乎必然增长性,如文中定理1和定理2.  相似文献   

6.
复的幂级数sum from n=0 to ∞(C_n(z-a)~n)在收敛圆k:|z-a|<R(0<R≤+∞)内的和函数f(z)具n=0有一些很好的性质,如:①,f(z)在k内解析;②,f(z)在k内具有任意阶导数,且可逐项求导至任意阶,即:f_(Z)~(m)=sum from n=m to ∞(n(n-1))……(n-m+1)·C_n(z-a)~(n-m),(z∈k,m∈N)等。但其和函数在收敛圆周|z-a|=R(0相似文献   

7.
本文的主要结果是证明了下述定理定理:设f(x)=sum from n=0 to ∞a_nJ_n(x)的收敛半径不小于1,其中a_n终规为正,即存在正整数N,当n≥N时,有a_n≥0。且sum from n=0 to ∞a_nJ_n′(1)=…=sum from n=0 to ∞a_nJ_n~(h-1)(1)=0 记δ_n=(a_n)/(2~nn!) 则当∞=k时,I(k)存在的充要条件是∑n~(h-1)δ_nlogn收敛。当k<ω相似文献   

8.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

9.
设l,p为二正整数,且满足条件设(1){f(z)}为域D内的一亚纯函数族,{f(z)}中的每个函数f(z)在D内的零点重级均≥l,F(z)-1的零点重级均≥p,这里,F(z)=f~((k))(z)+sum form i=1 to k-1(a_(k-i)f~((i))(z)),且1+sum from i=j to k-1(a_(k-i)≠0),j=0,1,…,k-1,则{f(z)}在D内正规。  相似文献   

10.
研究三阶差分系统边值问题Δ3ui(k) λhi(k)fi(u1(k),u2(k),…,un(k))=0,k∈[0,T],ui(0)=ui(1)=ui(T 3)=0,i=1,2,…,n.若令f0=sum from i=1 to n lim‖u‖→0 fi(u)/‖u‖且f∞=sum from i=1 to n lim‖u‖→∞ fi(u)/‖u‖,则在f0=0且f∞=∞,或者f0=∞且f∞=0的情况下,运用不动点指数理论证明对于所有的λ>0,上述系统存在一个正解.  相似文献   

11.
本文研究单位圆盘|z|<1内满足条件f′(z)+λzf″(z)(?)(1+Az)/(1+Bz)(λ≥0,-1≤B相似文献   

12.
利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin~(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z~+,0<α≤1,则级数sum from n=1 to ∞sin~1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)0,k,l∈Z。  相似文献   

13.
设 σ_n~2=1/n-r_n{sum from k=1 to n (e_k~2)-sum from u=1 to r_n(sum from k=1 to N (α_(nuk)e_k))~2} (1) 这里{e_k}是一串独立的试验误差,  相似文献   

14.
本文在对系数的幅角加以限制的条件下研究了Bieberbach猜想,得到了下述结果, 1·若f(z)=z+sum from n-2 to ∞ a_nz~n∈S,arga_n=θ_n, φ_n=θ_(n+1)-θ_n-θ_2, 如果α_n≤|φ_n|,n≥7,则|a_n|相似文献   

15.
本文主要结果为鞅差序列{X_i,J_i,i≥1}服从强大数律的充分条件为(1) sum from i=1 to ∞(E[|X_i|~p/a~p_i+|X_i|~p|J_(i-1)]<∞,0相似文献   

16.
关于亚纯函数的正规增长性   总被引:4,自引:0,他引:4  
本文得到了如下结果:设 f(z)是开平面上的亚纯函数,a_i(z)(i=1,2,…,n(f),n(f)≤∞)为满足 T(r,a_i(z))=o{T(r,f)}的亚纯函数,如果 sum from i=1 to n(f) δ(a_i(z),f)=2;且存在 a_k(z)(1≤k≤n(f))有δ(a_k(z),f)=1,则 f(z)是正规增长的.且当 f(z)的下级无穷时其级为正整数.  相似文献   

17.
Kohnen W公式的推广与简证   总被引:1,自引:0,他引:1  
胡付高 《洛阳大学学报》2003,18(4):25-25,42
对Kohnen W给出的同余公式sum from k=1 to p-1(1/k·2~k)≡sum from k=1 to (p-1)/2((-1)~(k-1)/k)(mod p)进行了推广,并给出了一个简单证明。  相似文献   

18.
设f(x)是定义在[0,+∞)上的函数,吴华英引进了S. Bernstein多项式推广的另一种形式: B_n~*(f, x)=e~(-(nx)~2) sum from n=k=0 to ∞ f(k~(1/2)/n)(nx)~(2l)/k!它不同于O. Szasz提示的S. Bernstein多项式在无穷区间的推广形式 B_n(f, x)=e~(-nx) sum from n=k=0 to ∞ f(k/n)(nx)~k/k! 以上两种形式都是[0,+∞)上的推广。本文将函数f(x)定义在(-∞,+∞)上,并给出它的推广形式:  相似文献   

19.
设f(x)∈L~P(Ω_n),1≤P≤2,δ>(n-1)(1/p-1/2),而σ_N~8(f)(x)表示f(x)在n维球面Ω_n上的Ces(?)ro平均.本文证明了(?)1/(N+1)sum from k=0 to N|σ_k~8(f)(x)-f(x)|~2a_k=0 a、e、x∈Ω_n其中权系数a_k>0满足1≤1/N+1(sum from k=0 to N)a_k≤A(A是一个绝对常数)  相似文献   

20.
本文主要结果如下:利用无穷大量的阶和阶数以及新的广义数的概念和性质,建立了正项级数敛散性的下述判别法:广义数判别法对于正项级数公项f(n),若(i)f(x)不→0(x→ ∞),则级数sum from n=1 to ∞(f(n))发散;(ii)f(x)→0(x→ ∞)而1'.阶数O~m(1/(f(x)))≥1 sum from i=1 to(p-1)(α_i βα_p)(F_pβ~(x)的阶数)其中F_pβ~(x)=xlogx……(log…logx)~β(?);β>1,p 都可任意选定,或2'1/(f(x))的阶(次)高于或等于F_pβ~(x)的,则级数sum from n=1 to ∞(f(n))收敛;(iii)f(x)→0(x→ ∞),而1'阶数O~m(1/(f(x)))≤1 sum from i=1 to p α_i(F_p(x)的阶数)其中F_p(x)=xlogx…(log…logx)(?),p 可任意选定,或2'1/(f(x))的阶(次)低于或等于F_p(x)的, 则级数sum from n=1 to ∞(f(n))发散。此法应用很广,一般的判别方法,如柯西判别法,达朗贝尔、拉贝以及高斯判别法等,所能适用的本法都适用,它们所不适用的本法也能适用,而且方法总的说来比较单一,只须考虑阶数和阶(次)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号