首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 859 毫秒
1.
用B3LYP、B3PW 91和MP2方法在6-311G(2df,2pd),6-311G(3df,3pd),cc-pVQZ基组水平上对H3S iF的谐振力场和振转光谱进行了研究.将计算得到的平衡几何结构(包括键长、键角)、转动常数、谐振频率和四次离心畸变常数分别与已有的实验值和理论值进行比较.由密度泛函方法计算得到的数据是可信的.  相似文献   

2.
利用DFT(B3LYP,B3PW91和B3P86方法)和MP2方法结合cc-pVnZ(n=D,T)基组计算了OCN_4分子的平衡态结构和光谱常数.三种密度泛函理论结合各基组进行的理论计算得到的结果非常接近,并且比MP2方法的计算结果与参考数据更接近,在方法的使用上对结果产生的影响并不明显,将基组从DZ增大到TZ时可以看到明显的数据变化,通过将我们的理论结果与参考数据进行比较发现,DFT方法结合TZ基组给出了更合理的理论计算结果.  相似文献   

3.
用三参数密度泛函B3LYP和耦合族理论CCSD(T)方法对6个阳离子分子XY (X,Y=Li,Na,K)的基态进行频率和结构优化计算,获得了其平衡键长re和谐振频率ωe.进而在全空间上进行势能扫描,获得的离散势能点被拟合到SPF函数,从拟合函数中抽取相应的光谱常数,包括非谐振频率ωexe、旋转常数Be、离心畸变常数De和旋振相互作用常数αe,解离能等分子特性也进行了计算.为了研究基组对结构和光谱常数的影响,分别应用6-311 G(d,f),6-311 G(2df,2pd),6-311 G(3df,3pd)3种基组,同时验证计算结果的一致性.结果表明:CCSD(T)计算的光谱常数结果更接近实验值;6-311 G(2df,2pd),6-311 G(3df,3pd)的结果比较一致,但对个别分子离子的光谱常数ωeye和ωeze3种基组显示出了较大的差异.理论计算的结果和可获得的实验结果以及其它理论计算结果符合得比较好.  相似文献   

4.
采用密度泛函理论(DFT)中的B3LYP、B3P86、B3PW91、B1B95、O3LYP、M05、M06、MPW3PBE和B1LYP等不同方法对一种新型荧光材料进行了理论研究.在6-31+G*基组水平上对该荧光材料的结构进行了优化,用前线轨道(HOMO、LOMO)理论分析了分子的轨道间相互作用;用AIM 2000程序包计算了所有化合物的电荷密度,进行了成键临界点(BCP)电荷密度分析.实验比较了不同方法下各物质的零点能、吉布斯自由能、荧光光谱最大吸收峰波长大小.发现密度泛函理论中的O3LYP方法计算得出的荧光光谱的最大吸收峰波长大小约为370.35 nm,与实测值380 nm最为接近.  相似文献   

5.
用B3LYP,B3PW91,B3P86,CCSD配合不同大小的基组及CBS-Q方法计算了在分子NH2NO2,CH3NNO2,(CH3)2NNO2和RDX中离解掉二氧化氮的键离解能.通过对键离解能计算结果和实验结果的比较,作者发现由B3LYP,B3P86和CBS-Q不能计算出满意的键离解能,但是,CCSD和B3PW91方法能计算出与实验值吻合较好的键离解能.考虑到由B3PW91计算耗时要比CCSD方法少得多,因此,作者认为由B3PW91,并配合6-31G(d)基组作为计算这些硝胺分子键离解能的方法.  相似文献   

6.
应用B3LYP、B3P86方法对AsS分子、AsS+、AsS-离子基态进行几何优化和单点能扫描计算,与实验值比较,得出最优化平衡结构和最优化基组.用最小二乘法拟合得到AsSX(X=-1,0,+1)分子(离子)基态的Murrell-Sorbie势能函数,并计算AsSX分子(离子)的谐振频率和光谱常数,这为AsSX分子(离子)的反应动力学提供了理论依据.  相似文献   

7.
SF5CF3几何构型及红外振动光谱的量子化学研究   总被引:1,自引:0,他引:1  
采用8种密度泛函方法BHLYP,BLYP,B3LYP,BP86,B3P86,B3PW91,BPW91和KMLYP,以及DZP 基组,对新的温室气体SF5CF3进行了几何构型优化和红外谐振光谱计算.该分子为Cs构型.通过计算值与实验值比较,用KMLYP和BHLYP方法所得几何构型参数与实验值最接近.采用8种方法对SF5CF3进行了红外谐振频率计算,通过与实验值对比,用B3LYP,B3P86和B3PW91方法得出了比较满意的结果.其平均绝对误差分别为29 cm-1,22 cm-1和24 cm-1.红外吸收强度预测表明,SF5CF3是一种威胁性很大的温室气体.  相似文献   

8.
应用密度泛函理论B3LYP和B3P86等多种计算方法,采用6-311g(d,f)、6-311++g(d,p)、6-311++g(3df,3pd)和aug-cc-pvdz多种基组分别对BF、BCl分子结构进行几何优化,选用最优基组对BF和BCl分子的几何结构、光谱特性进行进一步计算.计算结果表明,BF和BCl分子平衡核间距分别为0.126 26 nm和0.171 54nm,谐振频率分别为1 410.44 cm-1和838.06 cm-1,BF、BCl分子的平衡间距与实验数据符合得很好.  相似文献   

9.
采用Gaussian 03软件中的B3LYP、B3P86等方法和6-311G、3-21G、D95、6-311++G、MTS-mall、DGTZVP2、DGTZVP等基组对BeO和BeF分子的基态几何构型进行了结构优化和频率计算.根据优化和频率计算的结果进行分析比较,最终确定D95、6-311G、MTSmall为最优基组.然后用同样的方法对优选出来的基组分别对BeO和BeF分子的基态分子进行单点能扫描计算.用Murrell-Sorbie函数表示出分子解析势能函数,得出相关系数和力常数,并计算出各个分子的光谱数据,结果与实验值吻合较好并且优于其他文献值.  相似文献   

10.
采用群论及分子反应静力学原理,推导其Na Br和Na F分子基态电子态和合理的离解极限。运用Gaussian03程序中的多种方法和基组,计算分子的几何结构、离解能以及谐振频率,对Na Br分子选取B3LYP/6-311g(2df,2pd)为最优方法与基组,对Na F分子选取BP86/6-31g(3df,3pd)为最优方法与基组,分子在最优方法与基组下进行能量扫描,采用Murrell-Sorbie函数进行了非线性最小二乘法拟合得到分子势能函数,从而计算Na Br和Na F分子的力常数与光谱常数,与实验值对照,计算得到光谱常数值与实验值吻合甚好。  相似文献   

11.
采用二阶、三阶Moller-P lesset微扰理论方法(MP2,MP3),组态相互作用方法(QC ISD)及密度泛函理论方法(B3LYP),在6-311 G**基组下对弱结合分子体系ArHF进行了ab in itio计算,得到了Ar-HF体系的两个不同的线型平衡几何结构-ArHF、ArFH及其角型异构分子的结构,并计算得到了这几个异构分子的热力学常量和谐性力常量,进一步考察了不同方法对弱结合分子的影响.  相似文献   

12.
AlI,AlI_2分子的结构与从头计算   总被引:4,自引:2,他引:2  
应用密度泛函B3P86方法,采用DGDZVP基组对AlI(X1∑+)进行了理论计算,得到它的微观几何结构,力学性质和光谱性质,结果表明AlI的平衡核间距为0.258 56 nm,基态离解能为4.006 eV,谐振频率为308.361 7 cm-1,并得到它的Murrell-Sorbie势能函数.应用密度泛函B3P86/3-21G,优化出AlI2(X2A1)分子稳定构型为C2v,其平衡核间距Re=0.258 88 nm,∠IAlI=122.432 5°、离解能为5.278 4 eV,同时计算出了力常数及谐振频率.在推断出AlI2的离解极限此基础上,应用多体展式理论方法,导出了AlI2基态分子的解析势能函数,该势能面准确地再现了AlI2(X2A1)分子的结构特征和能量变化.  相似文献   

13.
使用“对称性匹配簇-组态相互作用”方法,6-311++G(3df,2pd)基组对BeH分子的第一激发双重态A2Π进行几何优化和离解能的计算,并进行了单点能扫描,同时用正规方程组拟合Murrell-Sorbie函数.利用得到的势能函数计算了与第一激发双重态相对应的力常数(f2,f3,f4)和光谱数据(eω,Be,eα,ωeχe),结果与实验数据符合的非常好.  相似文献   

14.
14NH自由基基态与第一激发单重态的结构与势能函数   总被引:2,自引:0,他引:2  
使用QCISD(T)/6-311++G(3df,2pd)和SAC-CI/D95(d)方法分别对14NH自由基的基态与第一激发单重态进行几何优化和离解能的计算,并进行了单点能扫描,同时用正规方程组拟合Murrell-Sorbie函数.利用得到的势能函数计算了与基态、第一激发单重态相对应的力常数(f2,f3,f4)和光谱数据(ωe,Be,eα,ωeχe),结果与实验数据符合的很好.  相似文献   

15.
用群论方法导出Bl结构MoN和WN晶体的弹性常数和力常数的关系。根据采用LMTO—ASA 方法计算得到的这两种晶体Bl结构平衡晶格常数和弹性常数,对其力常数和声子谱作第一原理的计算。  相似文献   

16.
应用群论及原子分子反应静力学方法推导了HOC1分子的电子态及其离解极限,采用B3P86方法,在CC-PVTZ水平上,优化出HOC1基态分子稳定构型为单重态的Cs构型,其平衡核间距RH-O=0.0965nm、RCI-O=0.1692nm、∠HOC1=102.9°,能量为.536.5061a.u..同时计算出基态的简正振动频率:对称伸缩振动频率V(A)=769.6cm^-1,弯曲振动频率V(A′)=1273.3cm^-1和反对称伸缩振动频率V(A′)=3805.8cm^-1.在此基础上,使用多体项展式理论方法,导出了基态HOC1分子的全空间解析势能函数,该势能函数准确再现了HOC1(Cs)平衡结构.  相似文献   

17.
利用原子分子反应静力学的有关原理,推导出了BeF分子的合理离解极限;采用密度泛函理论的B3P86方法,在6-311G,6-311++G,6-311G(3df,3pd),cc-PVQZ和cc-PVTZ基组下,对BeF分子基态的平衡结构、离解能和谐振频率进行了优化计算,利用B3P86/6-311G(3df,3pd)对BeF分子的基态进行了单点能量扫描,并将扫描结果用正规方程组拟合Murrell-Sorbie势能函数.由拟合得到的势能函数,计算与X^2∑^+态相应的光谱常数(Be,eα,ωe和eωχe),其结果与实验符合得较好.  相似文献   

18.
应用群论及原子分子反应静力学方法推导SiO2分子的电子态及其离解极限,在B3P86/cc-PVTZ水平上,对SiO2分子基态进行优化计算,得出基态SiO2分子的单重态能量最低,其稳定构型为D∞h构型,平衡核间距Re=0.151 3 nm、能量为-440.559 5 a.u..同时计算出基态的简正振动频率:对称伸缩振动频率v(Π)=1 005.63 cm-1,弯曲振动频率v(Σg)=297.86 cm-1和反对称伸缩振动频率v(Σu)=1 458.09 cm-1.在此基础上,使用多体项展式理论方法,导出了基态SiO2分子的全空间解析势能函数,该势能函数准确再现了SiO2(D∞h)的平衡结构.  相似文献   

19.
采用从头计算的耦合簇方法QCISD(T),在基组6-311++G(3df,3pd)下,优化计算了HCl分子基态的平衡结构和离解能,得到的平衡核间距与实验值吻合良好。采用标准Murrell—Sorbie函数和最小二乘法拟合出了HCl分子势能函数的解析表达式,并以此为基础进一步计算出HCl分子的力常数及光谱常数。计算结果与实验数据非常吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号