首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
§1.设k次对称函数f_k(z)=z+sum from v=1 to∝ (avk+1) z~(vk+1)在单位圆|z|<1中正则单叶,这类函数的全对称为S_k,记σ_n~(k)=z+sum from v=1 ton(avk+1)z~(vk+1)。 舍荀证明一切σ_n~(1)(z)在圆|z|<1/4中单叶,且不能易以更大的数.伊列夫证明当n≥15时,σ_n~(1)在圆|z|<1-4(lnn/n)中单叶.  相似文献   

2.
设f(z)=h(z)+g(z)=z+sum (a_nz_n) from n=2 to +∞+sum(b_nz~n)from n=1 to +∞为定义在单位圆盘U上的调和映照,满足条件sum(np) from n=2 to +∞(|an|+|bn|)≤1-|b1|,证明当0相似文献   

3.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

4.
1.引言设S={f(z)=z+sum from n=2 to ∞a_■z~n.;f在D:|z|<1内解析、单叶}1916年Bieberbach提出猜想:若f∈S,则(1.1)|a.|≤n,n=2,3,…,最近,Louis de Branges证明了下面的重要结果,它蕴含着Bieberbach猜想。De Branges定理,若f∈S,且(1.2)log (f(z))/z=sum from k=1 to ∞c_(?)z~k,(z∈D)则,对于n=1,2,…,有(1.3)sum from k=1 to n k(n+1-k)|Ck|~2≤4 sum from k=1 to n (n+1-k)/k. 这个不等式实际上是1971年Milin的猜想[7](例如可参阅[4,P.155])  相似文献   

5.
设Ω={f(z):f(z)在|z|<1内解析,f(z)=z sum from n=2 to ∞(an ibn)zn,an,bn为实数,sum from n=2 to ∞n (a2n bn2)~(1/2)≤1},找出了函数族Ω的极值点与支撑点.  相似文献   

6.
复的幂级数sum from n=0 to ∞(C_n(z-a)~n)在收敛圆k:|z-a|<R(0<R≤+∞)内的和函数f(z)具n=0有一些很好的性质,如:①,f(z)在k内解析;②,f(z)在k内具有任意阶导数,且可逐项求导至任意阶,即:f_(Z)~(m)=sum from n=m to ∞(n(n-1))……(n-m+1)·C_n(z-a)~(n-m),(z∈k,m∈N)等。但其和函数在收敛圆周|z-a|=R(0相似文献   

7.
§1.设k次对称函数fk(x)=z sum from v=1 to ∝(a_(vk)_1)~(z~(vk_1))=z sum from v=z to ∝ (a_n~(k)z~(vk 1)在单位圆|z|<1中正则单叶,这类函数的全体称为S_k,设σ_n~(k)=z sum from v=1 to ∝n (a_(vk)_1~(z~(vk 1))。 舍苟证明一切σ_n~(1)(z)在圆|z|<1/4中单叶,且不能易以更大的数,伊列夫证明当  相似文献   

8.
§1.引言设函数 f(z)=z+sum from n=2 to ∞ a_nz~n∈S是单位圆内的单叶解析函数,函数 f_1(z)=sum from n=1 to ∞ a_(2n-1)z~(2n-1),|z|=γ<1,(一)戈鲁净对 f(z)及 f_1(z)有下面准确的估计(1):|f(z)|+|f(-z)|≤γ/((1-γ)~2)+γ/((1+γ)~2) (1)|f′(z)|+|f′(-z)|≤(1+γ)/((1-γ)~3)+(1-γ)/((1+γ)~3) (2)|f_1(z)|≤γ(1+γ~2)/((1-γ~2)~2),|f′_1(z)|≤(1+6γ~n+γ~4)/((1-γ~2)~3),|(zf′_1(z))/(f_1(z))|≤(1+6γ~2+γ~4)/(1-γ~4) (3)本文将证明:设 f(z)=z+sum from n=2 to ∞ c_nz~n 是星形单叶函数,F(z)=z+sum from n=2 to ∞ a_nz~n 是凸形单叶函数,函数 F_1(z)  相似文献   

9.
一、引言 设给定x_i i=1,2…m,x_i∈[a,b]及此m个点上数据资料f_i i=1,2,…,m,寻求一函数φ(x)=sum from j=1 to n (α_jφ_j(x)),使sum from i=1 to m(ω(x_i)r_i~2)=sum from i=1 to m(ω(x_i))(f_i-(x)=sum from j=1 to n (α_jφ_j(x_i))~2达到最小,此即是带权ω(x)的线性最小二乘问题,其中ω(x)在[a,b]上定义,α_j是拟合系数,n是拟合阶数。  相似文献   

10.
本文是研究整函数的增长性.应用无穷级整函数的对数级与对数型的定义,以及参考文献[2]中的一些结果,进一步得到了关于无穷级整函数对数级与对数型的一些重要性制裁.现将主要结果叙述于下:定理1:设整函数f(Z)=sum from n=0 to ∞ a_nZ~n的对数级为ρ1,则有ρ1=(?)定理2:设整函数f(Z)=sum from n=0 to∞(a_nZ~n)的对数级为ρ_1,并且0<ρ_1<+∞,其对数型为σ_1,则有定理3:设整函数f(z)=sum from n=0 to∞( a_nZ~n),存在,并且0<ρ<十∞,则当0<ν<+∞时,ρ必为f(Z)的对数级,进而ν为f(Z)的对数型.定理4:设f(Z)=sum from n=0 to∞(a_nZ~n)为无穷级整函数,则f(Z)与它的导函数f’(z)具有相同的对数级与对数型.  相似文献   

11.
若f(z)=z sum from n=2 to ∞(a_nZ~n)在单位圆|z|<1中正则单叶,本文证明:当|a_3|≤2.44时,|a_n|相似文献   

12.
一、引言设给定函数f(z)=sum from n=0 to ∞(c_nz~n(|z|<1),其中a_n是复数。我们使用下列符号:  相似文献   

13.
记单位圆盘E={z||z|<1)中满足条件f(0)=0和f~(?)(0)=1的解析函数f(z)组成的类为A。设f(z)=z+sum from k=2 to ∞ a_kz~k∈A,δ≥0,St.Ruscheweyh在[1]中定义邻域N_s(f)如下: N_δ(f)={g(z)=2+sum from k=2 to ∞ b_kz~k|sum from k=2 to ∞ k|a_k-b_k|≤δ}。[1],[2]研究了使得N_δ(f)中所有函数g(z)含于E中某单叶函数类的条件。本文的目  相似文献   

14.
1、前言: 设f(z)=z+sum from n=2 to ∞(G_nz~n)是单位园|z|<1内的正则单叶函数,记这种函数之全体为S。Г.М.戈鲁辛证明有准确的估计:其中等号被kocbe函数所达到。 Jenkins.J.A补充(1)式而得到:  相似文献   

15.
引言设函数f(z)=z+sum from n=2 to ∞ a_nz~n (1)在图|z|>1内为正则单叶,命 S 表明这一函数族,比伯尔巴赫曾臆测对于任意的正整数 n 常有|a_n|≤n (2)当 a_n 全是实数,或 f(z)映射|z|<1成星形领域时,已成定理(1)(2)。里特勿得曾证明。|a_n|相似文献   

16.
在本文中我们证明了,若f(z)为单叶函数族K内的一函数,(w)为其逆并且(w)=w sum from n=1 to ∞ r_nw~n,则当n=8时,|r_n|1,等号成立仅当f(z)为f_0(z)=z/1-z及其族转的情形。在此之前,Libera,R.J.和Zlotkiewicz,E.J.考察了1n7时的情形。  相似文献   

17.
设f(z)=z sum from n=2 to ∞(a_nz∈S,则Biberbach猜想|a_n|≤n对一切n成立。对n=4的Bieberbach猜想迄今为止已有多种证明,它们都可引出|a_4|依赖于|a_2|的估计式。目前最好的结果为  相似文献   

18.
设(X,Y)为d×1随机向量,f(x,y)为其概率密度函数,(X_i,Y_i) i=1,2,…,n为抽自f的i. i. d. 样本,m(x)(?)E(Y|X=x)称Y对X的回归函数。Watson (1964),Nagaraya (1964)提出用m_n(x)=sum from i=1 to n (Y_iK(?))/sum from i=1 to n (K((x-X_i)/h_n))估计m(x),其中K(x)为R~d上的概率密度,h_n>0,h_n→0(n→∞),这种估计称核估计。引入记号:ω(x)(?) integral from R~1 to ∞(yf(x,y)dy),g(x)(?) integral from R~1 to ∞(f(x,y)dy),又ω_n(x)(?)1/(nh_n~d) sum from i=1 to n (Y_iK)((x-X_i)/h_n),g_n(x)(?)1/(nh_n~d) sum from i=1 to n (K((x-X_i)/h_n)),它们分别是ω(x)和g(x)的估计。则m(x)=ω(x)/g(x),m_n(x)=ω_n(x)/g_n(x)(约定0/0=0)。当d=1时,E. Schuster和S. Yakowitz(1979)证明了在一组条件下,存在常数c>0,他对(?)ε>0,当n充分大时,其中,  相似文献   

19.
设f(z)=z+sum from v=1 to∞(a_vz~v)是单位圆|z|<1内的解析函数,用N记这种函数的全体.MacGregor研究了N中函数f(z)的单叶星象性,得到若干结果.本文推广了这些结果.1.概念与记号设f_p(z)=z+sum from k=1 to∞(a_(kp)+1~z~(kp+1))是|z|<1内的p次对称单叶解析函数,其全体记为S_P(P=1,2,…).特别简记S_1=S.如果f_(z)∈S_p,且有β∈[0,1)使得Re{zf′_p(z)/f_p(z)}>β(|z|相似文献   

20.
本文主要证明了下述定理: 设f(z)=sum from n=0 to∞a_nz~(λ_n)为一超越整函数,那么: (1)当f(z)具有(b,d)型A.P.间隙时,对任一有穷复数a,都有δ_s(a,f)≤1-1/d;当b>0时,还有:sum from a≠∞ to δ(a,f)≤1-1/d。 (2):当λ_(m+1)-λ_m(m=n,n+1,…)的最大公因子d_n→∞(n→∞)时,对在一慢增长的亚纯函数a(z),都有:_s(a(z),f)≤1/2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号