首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 515 毫秒
1.
催化裂化原料油的乳化过程   总被引:2,自引:0,他引:2  
将掺渣蜡油乳化成W/O乳液,作为催化裂化原料油,在二次雾化和分子解聚作用下,可显著改善原料油雾化状况,降低结焦和干气收率。研究了掺渣蜡油的乳化过程,包括乳化剂的单剂筛选和复配以及乳化工艺条件。结果表明,烷基酚聚氧乙烯醚(M-2)具有较好的乳化性能;乳化剂的复配能增加乳化原料油稳定性;适宜的掺水量是ω水=0.10-0.15,加剂量为ω乳化剂=0.001-0.00125;乳化温度70℃-80℃,乳液体系中水珠分布直径为5μm-10μm,乳化原粒油在80℃时油水分层时间达14d。  相似文献   

2.
建立了乳化油高温稳定性评价方法 ,利用该方法考察了各种乳状液的高温稳定性。结果表明 ,乳状液的析出水的百分比与稳定时间成正比 ,高温下由水溶性乳化剂制得的乳化油的稳定性优于由油溶性乳化剂制得的乳化油。根据高温稳定性考察和成本评价结果 ,筛选出了适用于催化裂化乳化进料的乳化剂 ,并对常压渣油及其乳化油的催化裂化反应性能进行了研究。由于乳化油进入提升管后与催化剂接触发生二次爆破雾化 ,表面活性剂 (乳化剂 )对催化裂化反应也具有强化作用 ,因而极大地改善了原料油与催化剂的接触状况 ,提高了原料的转化深度。在相同的反应条件下 ,常压渣油乳化油的转化率比常压渣油提高 4 %~ 7% ,汽油产率提高 1 %~ 4 % ,液收率提高 3 %~ 5 % ,干气产率约增加 0 .8% ,焦炭产率相差不大。在近似的转化率下 ,乳化油作为原料时的产品选择性优于常压渣油。初步分析表明 ,催化裂化装置采用乳化进料以后 ,可大幅度地提高经济效益  相似文献   

3.
乳化重油高温稳定性及催化裂化反应性能研究   总被引:8,自引:0,他引:8  
建立了乳化油高温稳定性评价方法,利用该方法考察了各种乳状液的高温稳定性。结果表明,乳状液的析出水的百分比与稳定时间成正比,高温下由水溶性乳化剂制得的乳化油的稳定性优于由油溶性乳化剂制得的乳化油。根据高温稳定性考察和成本评价结果,筛选出了适用于催化裂化乳化进料的乳化剂,并对常压渣油及其乳化油的催化裂化反应性能进行了研究。由于乳化油进入提升管后与催化剂接触发生二次爆破雾化,表面活性剂(乳化剂)对催化裂化反应也具有强化作用,因而极大地改善了原料油与催化剂的接触状况,提高了原料的转化深度。在相同的反应条件下,常压渣油乳化油的转化率比常压渣油提高4%-7%,汽油产率提高1%-4%,液收率提高3%-5%,干气产率约增加0.8%,焦炭产率相差不大。在近似的转化率下,乳化油作为原料时的产品选择性优于常压渣油。初步分析表明,催化裂化装置采用乳化进料以后,可大幅度地提高经济效益。  相似文献   

4.
两段提升管催化裂化新工艺突破常规催化裂化工艺单一依靠调节反应参数来改善产品分布和质量的控制模式 ,在优化外部操作条件的同时 ,在反应内部改变中间产物的油气分压 ,使反应向理想的方向进行。试验结果表明 ,与常规催化裂化工艺相比 ,这种内外协调、优化控制的新工艺可使柴油产率提高 8个百分点 ,汽油产率仅减少1个百分点 ,而干气产率下降 1个百分点 ,重油产率下降 8个百分点 ,轻油选择性提高 10个百分点以上 ,大大改善了催化裂化产品的分布 ,达到了提高轻油收率、降低干气和重油产率的目的。  相似文献   

5.
两段提升管FCC新工艺改善催化裂化产品分布研究   总被引:6,自引:1,他引:5  
两段提升管催化裂化新工艺突破常规催化裂化工艺单一依靠调节反应参数来改善产品分布和质量的控制模式,在优化外部操作条件的时间,在反应内部改变中间产物的油气分压,使反应向理想的方向进行。试验结果表明,与常规催化裂化工艺相比,这种内外协调、优化控制的新工艺可使柴油产率提高8个百分点,汽油产率仅减少1个百分点,而干气产率下降1个百分点,重油产率下降8个百分点,轻油选择性提高10个百分点以上,大大改善了催化裂化产品的分布,达到了提高轻油收率、降低干气和重油产率的目的。  相似文献   

6.
重油悬浮床加氢裂化选择合适的温度、压力和反应时间可得到较高的液体收率,同时使结焦量保持在允许范围内,处理加工重油起到了很好的效果。重油悬浮床加氢催化裂化的工艺条件是:反应压力为中压7.0~8.0Mpa;温度410℃~430℃,且循环比在66:34至70:30 之间;过程采用镍分散型催化剂能够很好的抑制生焦,同时获得较高的轻油收率。  相似文献   

7.
添加剂对原油蒸馏拔出率的影响   总被引:2,自引:0,他引:2  
采用简易蒸馏方法,研究了添加不同类型的活化蒸馏剂对卡宾达常压重油、阿曼常压重油和卡宾达与阿曼混合油(质量比为7∶3)常压重油500°C前馏分油拔出率影响,实验表明对于卡宾达常压重油,添加1%催化裂化(FCC)油浆+0.5%苯酚净增收率提高2.33%;阿曼常压重油,添加0.1%活化剂No.3,净增收率提高1.62%;对卡宾达和阿曼混合油,添加4%糠醛精制抽出油,净增收率提高1.64%。研究还发现加剂后原料油的运动粘度最小点对应较高的馏分油收率。  相似文献   

8.
根据催化裂化的特殊要求 ,选择适用于重油催化裂化乳化进料的中性非离子型乳化剂进行了乳化实验 ,建立了乳状液储存稳定性的评价方法 ,并对乳状液的制备条件、乳状液的类型和各种乳化剂所形成的乳状液在 80℃下的储存稳定性进行了考察 ,以确定各种乳化剂的使用浓度。结果表明 ,在 80℃下 ,各乳化剂所形成的乳状液均为W /O型 ,且其储存稳定性并不随乳化剂浓度的增加而单调增大 ,而是存在最佳使用浓度。  相似文献   

9.
通过文献查阅和实验室研究工作,对纯重油及乳化重油催化裂化(FCC)反应进行了较为系统的考察和研究。建立了重油FCC四集总动力学模型。结合模型给出了合适的反应网络和数学描述。通过非线性最小二乘法,用MATLAB软件对模型求解,验证了模型的正确性,最终可借助模型对重油及乳化重油FCC进行产品预测。并建立了二者FCC反应四集总动力学模型。  相似文献   

10.
催化裂化用常压渣油乳化工艺研究   总被引:5,自引:1,他引:5  
根据催化裂化的特殊要求,选择适用于重油催化裂化乳化进料的中性非离子型乳化剂进行了乳化实验,建立了乳状兴储存稳定性的评价方法,并对乳状淮的制备条件、乳状液的类型和各种乳化剂所形成的乳状液在80℃下的储存稳定性进行了考察,以确定各种乳化剂的使用浓度。结果表明,在80℃下,各乳化剂所形成的乳状液均为W/O型,且其存储稳定性并不随乳化剂的增加而单调增大,而是存在最佳使用浓度。  相似文献   

11.
利用本实验室生产的粘多糖A对辽河重质稠油进行乳化降黏试验,系统考察油水质量比、多糖浓度、乳化温度、乳化转速和乳化时间对稠油乳化降黏的影响。结果表明:将油水质量比6:4,多糖质量浓度150 mg/L的稠油溶液放入温度25 ℃、转速160 r/min的摇床乳化6 h,稠油黏度由87000 mPa·s降至310 mPa·s,降黏率达到99.6%。此外,通过对乳化降黏后稠油破乳处理研究发现,稠油在室温静置24 h后即可实现油水分离,且破乳后的多糖水溶液可以重复使用2批次,显著降低了多糖乳化剂及后续稠油脱出水处理成本。因此,该粘多糖A可广泛应用于稠油乳化降黏开采和输送领域。  相似文献   

12.
以ZSM—5分子筛和拟薄水铝石为原料,硝酸镍为镍源,采用挤条成型及等体积浸渍法制备了不同镍负载量的催化剂。通过N_2吸附-脱附、X射线衍射和吡啶吸附红外光谱等方法对催化剂进行了表征。以加氢裂化尾油为原料,在固定床反应装置上对自制催化剂进行了临氢降凝反应评价。结果表明,负载适量镍可以改善催化剂的孔结构和酸性;在反应温度为280℃、空速为1.0 h~(-1)、氢油比为500、压力为15 MPa的条件下,使用镍负载量为5%的催化剂,可得到凝点为-19℃,收率为62.4%,黏度指数为92的润滑油基础油。  相似文献   

13.
应用计算流体力学软件FLUENT的RNG k-ε 湍流模型以及基于欧拉法的MIXTURE二相流模型,对高剪切均质机乳化重油时的流场进行三维数值模拟。分析一对定转子齿间的压力场和速度场,讨论在不同的转速和定转子齿隙下剪切率的变化情况。分析表明,通过改变转速和齿隙可以有效地提高其剪切率,使水以较小的微粒均一地分散到重油中,从而提高乳化重油的稳定性,以扩大乳化重油的使用范围。  相似文献   

14.
对 S O2-4 / Zr O2 超强酸体系作为重油催化裂化助剂进行了研究。结果表明,加入适量的 S O2-4 / Zr O2 可提高轻质油收率,并能降低催化剂生焦;在工业催化裂化高温水蒸汽流化的条件下, S O2-4 / Zr O2 超强酸体系中的 B 酸对重油催化裂化起着至关重要的作用。  相似文献   

15.
特超稠油水热裂解降粘反应研究   总被引:1,自引:1,他引:0  
针对特超稠油开采难的问题,进行了无水及有水条件下超稠油的裂解实验,通过族组分、气相色谱仪及红外光谱仪对水热裂解反应前后稠油裂解降黏规律进行了研究。结果表明,超稠油经过无水参与的裂解反应后,胶质含量减少,沥青质的含量大幅上升,芳烃的含量大幅下降,饱和烃含量略有增加。超稠油经过有水参与的裂解反应后,沥青质及胶质的含量降低,饱和烃与芳烃的含量增加。无水存在的情况下,超稠油在高温的条件下发生了裂解及聚合反应,且以生成沥青质的聚合反应为主,主要由芳烃及胶质聚合转化生成沥青质,稠油黏度增加。高温水参与了稠油水热裂解反应后,其中的聚合反应得到了抑制,促进了裂解反应的进行,使稠油的重质组分向轻质组分转化,稠油黏度降低。  相似文献   

16.
塔河油田深层稠油掺稀降黏技术   总被引:5,自引:0,他引:5  
针对塔河油田超深层稠油储层地质特点和稠油性质,进行了稠油掺稀降黏室内实验和现场试验.室内实验分析了塔河油田稠油黏度的影响因素(稠油特性、温度、压力、含水、流动状态、溶解气、矿化度).讨论了塔河油田稠油掺稀降黏的原理及降黏规律,并采用2口井的稀油对3口井的稠油进行定温条件下不同掺稀比例的稠油降黏实验.实验结果表明:掺稀比例和稠、稀油黏度差等因素都会影响降黏的效果.当稠油与稀油以体积比1:1混合后,稠油黏度下降幅度较大,降黏率一般大于95%.现场试验表明,各种掺稀降黏工艺管柱及工艺均能适用于塔河油田不同开采方式、不同含水情况下油井的正常生产,工艺的普适性较好.塔河油田深层稠油油藏掺稀降黏效果明显,投入产出比为1:7.  相似文献   

17.
超稠油掺稀油开采实验及数值模拟研究   总被引:2,自引:0,他引:2  
蒸汽吞吐是增加稠油产量的一种经济而有效的方法,但该方法存在热损失大等问题,使注汽效果达不到预期的目的。采用在注蒸汽过程中向地层掺入稀油的方法来降低地层稠油的粘度,实验研究了超稠油掺稀油后粘度的变化,并按非线性混合方法计算了稠油与稀油混合后的粘度。通过数值模拟,考察了掺稀油的注入量、注入方式、注入时机、注稀油后的生产时间等参数对开发效果的影响。结果表明,在掺稀油开发超稠油的过程中,焖井结束后可适当延长生产时间,以增加周期产油量;掺稀油的最佳注入时机应选在第3或第4周期开始;周期注入稀油的量为10-15m^3,在此范围内,换油率较大;稀油的注入方式按2-3个段塞注入比较合适。注汽过程中掺稀油的方法可在很大程度上改善超稠油的开发效果。  相似文献   

18.
重油催化装置反应系统的技术改造   总被引:1,自引:0,他引:1  
为了减少炼油厂高低并列式两段再生重油催化裂化装置频繁停工 ,降低干气产率 ,提高加工能力和掺渣能力 ,兰州石化公司炼油厂对该装置进行了技术改造 ,同时多产了液态烃和柴油 .新鲜原料和回炼油改由 BWJ型高效雾化进料喷嘴注入 ,沉降器由原来的三叶快分换为全封闭直联快速分离系统 ,在原来采用急冷油作终止剂的基础上 ,新增急冷水 .通过改造 ,有效地降低了干气产率 ,减少了结焦 ,增加了轻质油收率 ,提高了装置的加工能力、掺渣能力及柴汽比 ,较好地实现了预期目标  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号