首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
The Arabidopsis F-box protein TIR1 is an auxin receptor   总被引:10,自引:0,他引:10  
Kepinski S  Leyser O 《Nature》2005,435(7041):446-451
  相似文献   

4.
Mechanism of auxin perception by the TIR1 ubiquitin ligase   总被引:5,自引:0,他引:5  
  相似文献   

5.
The F-box protein TIR1 is an auxin receptor   总被引:9,自引:0,他引:9  
Dharmasiri N  Dharmasiri S  Estelle M 《Nature》2005,435(7041):441-445
  相似文献   

6.
Xu L  Wei Y  Reboul J  Vaglio P  Shin TH  Vidal M  Elledge SJ  Harper JW 《Nature》2003,425(6955):316-321
Programmed destruction of regulatory proteins through the ubiquitin-proteasome system is a widely used mechanism for controlling signalling pathways. Cullins are proteins that function as scaffolds for modular ubiquitin ligases typified by the SCF (Skp1-Cul1-F-box) complex. The substrate selectivity of these E3 ligases is dictated by a specificity module that binds cullins. In the SCF complex, this module is composed of Skp1, which binds directly to Cul1, and a member of the F-box family of proteins. F-box proteins bind Skp1 through the F-box motif, and substrates by means of carboxy-terminal protein interaction domains. Similarly, Cul2 and Cul5 interact with BC-box-containing specificity factors through the Skp1-like protein elongin C. Cul3 is required for embryonic development in mammals and Caenorhabditis elegans but its specificity module is unknown. Here we report the identification of a large family of BTB-domain proteins as substrate-specific adaptors for C. elegans CUL-3. Biochemical studies using the BTB protein MEL-26 and its genetic target MEI-1 (refs 12, 13) indicate that BTB proteins merge the functional properties of Skp1 and F-box proteins into a single polypeptide.  相似文献   

7.
In eukaryotes, the ubiquitin-mediated protein degradation pathway has been shown to control several key biological processes such as cell division, development, metabolism and immune response. F-box proteins, as a part of SCF (Skp1-Cullin (or Cdc53)-F-box) complex, functioned by interacting with substrate proteins, leading to their subsequent degradation by the 26S proteasome. To date, several F-box proteins identified in Arabidopsis and Antirrhinum have been shown to play important roles in auxin signal transduction, floral organ formation, flowering and leaf senescence. Arabidopsis genome sequence analysis revealed that it encodes over 1000 predicted F-box proteins accounting for about 5% of total predicted proteins. These results indicate that the ubiquitin-mediated protein degradation involving the F-box proteins is an important mechanism controlling plant gene expression. Here, we review the known F-box proteins and their functionsin flowering plants.  相似文献   

8.
F-box proteins are members of a large family that regulates the cell cycle, the immune response, signalling cascades and developmental programmes by targeting proteins, such as cyclins, cyclin-dependent kinase inhibitors, IkappaBalpha and beta-catenin, for ubiquitination (reviewed in refs 1-3). F-box proteins are the substrate-recognition components of SCF (Skp1-Cullin-F-box protein) ubiquitin-protein ligases. They bind the SCF constant catalytic core by means of the F-box motif interacting with Skp1, and they bind substrates through their variable protein-protein interaction domains. The large number of F-box proteins is thought to allow ubiquitination of numerous, diverse substrates. Most organisms have several Skp1 family members, but the function of these Skp1 homologues and the rules of recognition between different F-box and Skp1 proteins remain unknown. Here we describe the crystal structure of the human F-box protein Skp2 bound to Skp1. Skp1 recruits the F-box protein through a bipartite interface involving both the F-box and the substrate-recognition domain. The structure raises the possibility that different Skp1 family members evolved to function with different subsets of F-box proteins, and suggests that the F-box protein may not only recruit substrate, but may also position it optimally for the ubiquitination reaction.  相似文献   

9.
Structural basis of steroid hormone perception by the receptor kinase BRI1   总被引:1,自引:0,他引:1  
Hothorn M  Belkhadir Y  Dreux M  Dabi T  Noel JP  Wilson IA  Chory J 《Nature》2011,474(7352):467-471
Polyhydroxylated steroids are regulators of body shape and size in higher organisms. In metazoans, intracellular receptors recognize these molecules. Plants, however, perceive steroids at membranes, using the membrane-integral receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1). Here we report the structure of the Arabidopsis thaliana BRI1 ligand-binding domain, determined by X-ray diffraction at 2.5?? resolution. We find a superhelix of 25 twisted leucine-rich repeats (LRRs), an architecture that is strikingly different from the assembly of LRRs in animal Toll-like receptors. A 70-amino-acid island domain between LRRs 21 and 22 folds back into the interior of the superhelix to create a surface pocket for binding the plant hormone brassinolide. Known loss- and gain-of-function mutations map closely to the hormone-binding site. We propose that steroid binding to BRI1 generates a docking platform for a co-receptor that is required for receptor activation. Our findings provide insight into the activation mechanism of this highly expanded family of plant receptors that have essential roles in hormone, developmental and innate immunity signalling.  相似文献   

10.
Auxin is a key plant morphogenetic signal but tools to analyse dynamically its distribution and signalling during development are still limited. Auxin perception directly triggers the degradation of Aux/IAA repressor proteins. Here we describe a novel Aux/IAA-based auxin signalling sensor termed DII-VENUS that was engineered in the model plant Arabidopsis thaliana. The VENUS fast maturing form of yellow fluorescent protein was fused in-frame to the Aux/IAA auxin-interaction domain (termed domain II; DII) and expressed under a constitutive promoter. We initially show that DII-VENUS abundance is dependent on auxin, its TIR1/AFBs co-receptors and proteasome activities. Next, we demonstrate that DII-VENUS provides a map of relative auxin distribution at cellular resolution in different tissues. DII-VENUS is also rapidly degraded in response to auxin and we used it to visualize dynamic changes in cellular auxin distribution successfully during two developmental responses, the root gravitropic response and lateral organ production at the shoot apex. Our results illustrate the value of developing response input sensors such as DII-VENUS to provide high-resolution spatio-temporal information about hormone distribution and response during plant growth and development.  相似文献   

11.
Cytochrome P450 proteins (CYP450s) are membrane-associated haem proteins that metabolize physiologically important compounds in many species of microorganisms, plants and animals. Mammalian CYP450s recognize and metabolize diverse xenobiotics such as drug molecules, environmental compounds and pollutants. Human CYP450 proteins CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 are the major drug-metabolizing isoforms, and contribute to the oxidative metabolism of more than 90% of the drugs in current clinical use. Polymorphic variants have also been reported for some CYP450 isoforms, which has implications for the efficacy of drugs in individuals, and for the co-administration of drugs. The molecular basis of drug recognition by human CYP450s, however, has remained elusive. Here we describe the crystal structure of a human CYP450, CYP2C9, both unliganded and in complex with the anti-coagulant drug warfarin. The structure defines unanticipated interactions between CYP2C9 and warfarin, and reveals a new binding pocket. The binding mode of warfarin suggests that CYP2C9 may undergo an allosteric mechanism during its function. The newly discovered binding pocket also suggests that CYP2C9 may simultaneously accommodate multiple ligands during its biological function, and provides a possible molecular basis for understanding complex drug-drug interactions.  相似文献   

12.
N-glycosylation of proteins in the endoplasmic reticulum (ER) has a central role in protein quality control. Here we report that N-glycan serves as a signal for degradation by the Skp1-Cullin1-Fbx2-Roc1 (SCF(Fbx2)) ubiquitin ligase complex. The F-box protein Fbx2 (ref. 4) binds specifically to proteins attached to N-linked high-mannose oligosaccharides and subsequently contributes to ubiquitination of N-glycosylated proteins. Pre-integrin beta 1 is a target of Fbx2; these two proteins interact in the cytosol after inhibition of the proteasome. In addition, expression of the mutant Fbx2 Delta F, which lacks the F-box domain that is essential for forming the SCF complex, appreciably blocks degradation of typical substrates of the ER-associated degradation pathway. Our results indicate that SCF(Fbx2) ubiquitinates N-glycosylated proteins that are translocated from the ER to the cytosol by the quality control mechanism.  相似文献   

13.
G protein-coupled receptors represent the largest family of membrane receptors that instigate signalling through nucleotide exchange on heterotrimeric G proteins. Nucleotide exchange, or more precisely, GDP dissociation from the G protein α-subunit, is the key step towards G protein activation and initiation of downstream signalling cascades. Despite a wealth of biochemical and biophysical studies on inactive and active conformations of several heterotrimeric G proteins, the molecular underpinnings of G protein activation remain elusive. To characterize this mechanism, we applied peptide amide hydrogen-deuterium exchange mass spectrometry to probe changes in the structure of the heterotrimeric bovine G protein, Gs (the stimulatory G protein for adenylyl cyclase) on formation of a complex with agonist-bound human β(2) adrenergic receptor (β(2)AR). Here we report structural links between the receptor-binding surface and the nucleotide-binding pocket of Gs that undergo higher levels of hydrogen-deuterium exchange than would be predicted from the crystal structure of the β(2)AR-Gs complex. Together with X-ray crystallographic and electron microscopic data of the β(2)AR-Gs complex (from refs 2, 3), we provide a rationale for a mechanism of nucleotide exchange, whereby the receptor perturbs the structure of the amino-terminal region of the α-subunit of Gs and consequently alters the 'P-loop' that binds the β-phosphate in GDP. As with the Ras family of small-molecular-weight G proteins, P-loop stabilization and β-phosphate coordination are key determinants of GDP (and GTP) binding affinity.  相似文献   

14.
Pellegrini L  Burke DF  von Delft F  Mulloy B  Blundell TL 《Nature》2000,407(6807):1029-1034
Fibroblast growth factors (FGFs) are a large family of structurally related proteins with a wide range of physiological and pathological activities. Signal transduction requires association of FGF with its receptor tyrosine kinase (FGFR) and heparan sulphate proteoglycan in a specific complex on the cell surface. Direct involvement of the heparan sulphate glycosaminoglycan polysaccharide in the molecular association between FGF and its receptor is essential for biological activity. Although crystal structures of binary complexes of FGF-heparin and FGF-FGFR have been described, the molecular architecture of the FGF signalling complex has not been elucidated. Here we report the crystal structure of the FGFR2 ectodomain in a dimeric form that is induced by simultaneous binding to FGF1 and a heparin decasaccharide. The complex is assembled around a central heparin molecule linking two FGF1 ligands into a dimer that bridges between two receptor chains. The asymmetric heparin binding involves contacts with both FGF1 molecules but only one receptor chain. The structure of the FGF1-FGFR2-heparin ternary complex provides a structural basis for the essential role of heparan sulphate in FGF signalling.  相似文献   

15.
Mao B  Wu W  Davidson G  Marhold J  Li M  Mechler BM  Delius H  Hoppe D  Stannek P  Walter C  Glinka A  Niehrs C 《Nature》2002,417(6889):664-667
The Wnt family of secreted glycoproteins mediate cell cell interactions during cell growth and differentiation in both embryos and adults. Canonical Wnt signalling by way of the beta-catenin pathway is transduced by two receptor families. Frizzled proteins and lipoprotein-receptor-related proteins 5 and 6 (LRP5/6) bind Wnts and transmit their signal by stabilizing intracellular beta-catenin. Wnt/beta-catenin signalling is inhibited by the secreted protein Dickkopf1 (Dkk1), a member of a multigene family, which induces head formation in amphibian embryos. Dkk1 has been shown to inhibit Wnt signalling by binding to and antagonizing LRP5/6. Here we show that the transmembrane proteins Kremen1 and Kremen2 are high-affinity Dkk1 receptors that functionally cooperate with Dkk1 to block Wnt/beta-catenin signalling. Kremen2 forms a ternary complex with Dkk1 and LRP6, and induces rapid endocytosis and removal of the Wnt receptor LRP6 from the plasma membrane. The results indicate that Kremen1 and Kremen2 are components of a membrane complex modulating canonical Wnt signalling through LRP6 in vertebrates.  相似文献   

16.
Mahon MJ  Donowitz M  Yun CC  Segre GV 《Nature》2002,417(6891):858-861
The parathyroid hormone 1 receptor (PTH1R) is a class II G-protein-coupled receptor. PTH1R agonists include both PTH, a hormone that regulates blood calcium and phosphate, and PTH-related protein (PTHrP), a paracrine/autocrine factor that is essential for development, particularly of the skeleton. Adenylyl cyclase activation is thought to be responsible for most cellular responses to PTH and PTHrP, although many actions appear to be independent of adenylyl cyclase. Here we show that the PTH1R binds to Na(+)/H(+) exchanger regulatory factors (NHERF) 1 and 2 through a PDZ-domain interaction in vitro and in PTH target cells. NHERF2 simultaneously binds phospholipase C beta 1 and an atypical, carboxyl-terminal PDZ consensus motif, ETVM, of the PTH1R through PDZ1 and PDZ2, respectively. PTH treatment of cells that express the NHERF2 PTH1R complex markedly activates phospholipase C beta and inhibits adenylyl cyclase through stimulation of inhibitory G proteins (G(i/o) proteins). NHERF-mediated assembly of PTH1R and phospholipase C beta is a unique mechanism to regulate PTH signalling in cells and membranes of polarized cells that express NHERF, which may account for many tissue- and cell-specific actions of PTH/PTHrP and may also be relevant to signalling by many G-protein-coupled receptors.  相似文献   

17.
Tzfira T  Vaidya M  Citovsky V 《Nature》2004,431(7004):87-92
Genetic transformation of plant cells by Agrobacterium represents a unique case of trans-kingdom DNA transfer. During this process, Agrobacterium exports its transferred (T) DNA and several virulence (Vir) proteins into the host cell, within which T-DNA nuclear import is mediated by VirD2 (ref. 3) and VirE2 (ref. 4) and their host cell interactors AtKAP-alpha and VIP1 (ref. 6), whereas its integration is mediated mainly by host cell proteins. The factors involved in the uncoating of T-DNA from its cognate proteins, which occurs before integration into the host genome, are still unknown. Here, we report that VirF-one of the few known exported Vir proteins whose function in the host cell remains unknown-is involved in targeted proteolysis of VIP1 and VirE2. We show that VirF localizes to the plant cell nucleus and interacts with VIP1, a nuclear protein. VirF, which contains an F-box motif, significantly destabilizes both VIP1 and VirE2 in yeast cells. Destabilization of VIP1 in the presence of VirF was then confirmed in planta. These results suggest that VIP1 and its cognate VirE2 are specifically targeted by the VirF-containing Skp1-Cdc53-cullin-F-box complex for proteolysis. The critical role of proteasomal degradation in Agrobacterium-mediated genetic transformation was also evident from inhibition of T-DNA expression by a proteasomal inhibitor.  相似文献   

18.
19.
Auxin inhibits endocytosis and promotes its own efflux from cells   总被引:2,自引:0,他引:2  
One of the mechanisms by which signalling molecules regulate cellular behaviour is modulating subcellular protein translocation. This mode of regulation is often based on specialized vesicle trafficking, termed constitutive cycling, which consists of repeated internalization and recycling of proteins to and from the plasma membrane. No such mechanism of hormone action has been shown in plants although several proteins, including the PIN auxin efflux facilitators, exhibit constitutive cycling. Here we show that a major regulator of plant development, auxin, inhibits endocytosis. This effect is specific to biologically active auxins and requires activity of the Calossin-like protein BIG. By inhibiting the internalization step of PIN constitutive cycling, auxin increases levels of PINs at the plasma membrane. Concomitantly, auxin promotes its own efflux from cells by a vesicle-trafficking-dependent mechanism. Furthermore, asymmetric auxin translocation during gravitropism is correlated with decreased PIN internalization. Our data imply a previously undescribed mode of plant hormone action: by modulating PIN protein trafficking, auxin regulates PIN abundance and activity at the cell surface, providing a mechanism for the feedback regulation of auxin transport.  相似文献   

20.
AbdAlla S  Lother H  Quitterer U 《Nature》2000,407(6800):94-98
The vasopressor angiotensin II regulates vascular contractility and blood pressure through binding to type 1 angiotensin II receptors (AT1; refs 1, 2). Bradykinin, a vasodepressor, is a functional antagonist of angiotensin II (ref. 3). The two hormone systems are interconnected by the angiotensin-converting enzyme, which releases angiotensin II from its precursor and inactivates the vasodepressor bradykinin. Here we show that the AT1 receptor and the bradykinin (B2) receptor also communicate directly with each other. They form stable heterodimers, causing increased activation of G alpha(q) and G alpha(i) proteins, the two major signalling proteins triggered by AT1. Furthermore, the endocytotic pathway of both receptors changed with heterodimerization. This is the first example of signal enhancement triggered by heterodimerization of two different vasoactive hormone receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号